-
2
-
-
84962985031
-
Chebyshev polynomials and Markov-Bernstein type inequalities for rational spaces
-
BORWEIN, P., ERDÉLYI, T. and ZHANG, J. (1994). Chebyshev polynomials and Markov-Bernstein type inequalities for rational spaces. J. London Math. Soc. 50 501-519.
-
(1994)
J. London Math. Soc.
, vol.50
, pp. 501-519
-
-
Borwein, P.1
Erdélyi, T.2
Zhang, J.3
-
3
-
-
0007264924
-
E-optimal designs for polynomial regression without intercept
-
CHANG, F.-C. and HEILIGERS, B. (1996). E-optimal designs for polynomial regression without intercept. J. Statist. Plann. Inference 55 371-387.
-
(1996)
J. Statist. Plann. Inference
, vol.55
, pp. 371-387
-
-
Chang, F.-C.1
Heiligers, B.2
-
4
-
-
21144464543
-
A note on E-optimal designs for weighted polynomial regression
-
DETTE, H. (1993). A note on E-optimal designs for weighted polynomial regression. Ann. Statist. 21 767-771.
-
(1993)
Ann. Statist.
, vol.21
, pp. 767-771
-
-
Dette, H.1
-
5
-
-
0002487793
-
Designing experiments with respect to 'standardized' optimality criteria
-
DETTE, H. (1997a). Designing experiments with respect to 'standardized' optimality criteria. J. Roy. Statist. Soc. Ser. B 59 97-110.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 97-110
-
-
Dette, H.1
-
6
-
-
0031283652
-
E-optimal designs for regression models with quantitative factors - A reasonable choice?
-
DETTE, H. (1997b). E-optimal designs for regression models with quantitative factors - a reasonable choice? Can. J. Statist. 25 531-543.
-
(1997)
Can. J. Statist.
, vol.25
, pp. 531-543
-
-
Dette, H.1
-
7
-
-
0033236907
-
Optimal designs for rational models and weighted polynomial regression
-
DETTE, H., HAINES, L. M. and IMHOF, L. (1999). Optimal designs for rational models and weighted polynomial regression. Ann. Statist. 27 1272-1293.
-
(1999)
Ann. Statist.
, vol.27
, pp. 1272-1293
-
-
Dette, H.1
Haines, L.M.2
Imhof, L.3
-
10
-
-
0001827635
-
Optimal design for inverse quadratic polynomials
-
HAINES, L. M. (1992). Optimal design for inverse quadratic polynomials. South African Statist. J. 26 25-41.
-
(1992)
South African Statist. J.
, vol.26
, pp. 25-41
-
-
Haines, L.M.1
-
11
-
-
0030366316
-
Optimal designs for rational models
-
HE, Z., STUDDEN, W. J. and SUN, D. (1996). Optimal designs for rational models. Ann. Statist. 24 2128-2147.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2128-2147
-
-
He, Z.1
Studden, W.J.2
Sun, D.3
-
12
-
-
21844505924
-
E-optimal designs in weighted polynomial regression
-
HEILIGERS, B. (1994). E-optimal designs in weighted polynomial regression. Ann. Statist. 22 917-929.
-
(1994)
Ann. Statist.
, vol.22
, pp. 917-929
-
-
Heiligers, B.1
-
13
-
-
0030607406
-
Computing E-optimal polynomial regression designs
-
HEILIGERS, B. (1996). Computing E-optimal polynomial regression designs. J. Statist. Plann. Inference 55 219-233.
-
(1996)
J. Statist. Plann. Inference
, vol.55
, pp. 219-233
-
-
Heiligers, B.1
-
14
-
-
0035648511
-
Totally positive regression: E-optimal designs
-
To appear
-
HEILIGERS, B. (2001). Totally positive regression: E-optimal designs. Metrika. To appear.
-
(2001)
Metrika
-
-
Heiligers, B.1
-
15
-
-
0033475341
-
Extending design-optimality from an initial model to augmented models
-
IMHOF, L. and KRAFFT, O. (1999). Extending design-optimality from an initial model to augmented models. Metrika 49 19-26.
-
(1999)
Metrika
, vol.49
, pp. 19-26
-
-
Imhof, L.1
Krafft, O.2
-
18
-
-
0007185719
-
Analytical theory of E-optimal designs for polynomial regression
-
(N. Balakrishnan, V. B. Melas and S. Ermakov, eds.) Birkhäuser, Boston
-
MELAS, V. B. (2000). Analytical theory of E-optimal designs for polynomial regression. In Advances in Stochastic Simulation Methods (N. Balakrishnan, V. B. Melas and S. Ermakov, eds.) 85-115. Birkhäuser, Boston.
-
(2000)
Advances in Stochastic Simulation Methods
, pp. 85-115
-
-
Melas, V.B.1
-
19
-
-
0030079806
-
On hermite interpolation by Cauchy-Vandermonde systems: The lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix
-
MÜHLBACH, G. (1996). On Hermite interpolation by Cauchy-Vandermonde systems: the Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix. J. Comput. Appl. Math. 67 147-159.
-
(1996)
J. Comput. Appl. Math.
, vol.67
, pp. 147-159
-
-
Mühlbach, G.1
-
20
-
-
0001198516
-
Elliptic orthogonal and extremal polynomials
-
PEHERSTORFER, F. (1995). Elliptic orthogonal and extremal polynomials. Proc. London Math. Soc. 70 605-624.
-
(1995)
Proc. London Math. Soc.
, vol.70
, pp. 605-624
-
-
Peherstorfer, F.1
-
23
-
-
21144471847
-
E-optimal designs for polynomial regression
-
PUKELSHEIM, F. and STUDDEN, W. J. (1993). E-optimal designs for polynomial regression. Ann. Statist. 21 402-415.
-
(1993)
Ann. Statist.
, vol.21
, pp. 402-415
-
-
Pukelsheim, F.1
Studden, W.J.2
-
25
-
-
38149143503
-
Optimal designs for interpolation
-
SPRUILL, M. C. (1987). Optimal designs for interpolation. J. Statist. Plann. Inference 16 219-229.
-
(1987)
J. Statist. Plann. Inference
, vol.16
, pp. 219-229
-
-
Spruill, M.C.1
-
27
-
-
0001461163
-
Optimal designs on Tchebycheff points
-
STUDDEN, W. J. (1968). Optimal designs on Tchebycheff points. Ann. Math. Statist. 39 1435-1447.
-
(1968)
Ann. Math. Statist.
, vol.39
, pp. 1435-1447
-
-
Studden, W.J.1
-
28
-
-
0001202862
-
Remez's procedure for finding optimal designs
-
STUDDEN, W. J. and TSAY, J.-Y. (1976). Remez's procedure for finding optimal designs. Ann. Statist. 4 1271-1279.
-
(1976)
Ann. Statist.
, vol.4
, pp. 1271-1279
-
-
Studden, W.J.1
Tsay, J.-Y.2
|