메뉴 건너뛰기




Volumn 37, Issue 3, 2001, Pages 407-413

Regular and chaotic motions of mathematical pendulums

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035537346     PISSN: 10637095     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1011340116942     Document Type: Article
Times cited : (8)

References (9)
  • 1
    • 0031175642 scopus 로고    scopus 로고
    • Estimating the boundary of the domain of aperiodic motions
    • 1. A. A. Martynyuk and N. V. Nikitina, "Estimating the boundary of the domain of aperiodic motions," Prikl. Mekh., 33, No. 12, 89-95 (1997).
    • (1997) Prikl. Mekh. , vol.33 , Issue.12 , pp. 89-95
    • Martynyuk, A.A.1    Nikitina, N.V.2
  • 2
    • 0001834849 scopus 로고
    • Stability of a center under periodic disturbances
    • 2. V. K. Mel'nikov, "Stability of a center under periodic disturbances," Tr. Moskovskogo Obshch., No. 12, 3-52 (1963).
    • (1963) Tr. Moskovskogo Obshch. , Issue.12 , pp. 3-52
    • Mel'nikov, V.K.1
  • 3
    • 0000483896 scopus 로고    scopus 로고
    • Chaotic paths of a double-link mathematical pendulum
    • 3. V. Moauro and P. Negrini, "Chaotic paths of a double-link mathematical pendulum," Prikl. Mat. Mekh., 62, No. 5, 892-895 (1998).
    • (1998) Prikl. Mat. Mekh. , vol.62 , Issue.5 , pp. 892-895
    • Moauro, V.1    Negrini, P.2
  • 7
    • 0020943209 scopus 로고
    • Strange attractors and chaos in nonlinear mechanics
    • 7. P. Holmes and F. C. Moon, "Strange attractors and chaos in nonlinear mechanics," Trans. ASME, J. Mech., 50, 1021-1032 (1983).
    • (1983) Trans. ASME, J. Mech. , vol.50 , pp. 1021-1032
    • Holmes, P.1    Moon, F.C.2
  • 8
    • 0032243948 scopus 로고    scopus 로고
    • Dynamic principle of symmetry
    • 8. A. A. Martynyuk and N. V. Nikitina, "Dynamic principle of symmetry," Int. Appl. Mech., 34, No. 11, 1158-1164 (1998).
    • (1998) Int. Appl. Mech. , vol.34 , Issue.11 , pp. 1158-1164
    • Martynyuk, A.A.1    Nikitina, N.V.2
  • 9
    • 0034257752 scopus 로고    scopus 로고
    • The theory of motion of a double mathematical pendulum
    • 9. A. A. Martynyuk and N. V. Nikitina, "The theory of motion of a double mathematical pendulum," Int. Appl. Mech., 36, No. 9, 1252-1258 (2000).
    • (2000) Int. Appl. Mech. , vol.36 , Issue.9 , pp. 1252-1258
    • Martynyuk, A.A.1    Nikitina, N.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.