-
2
-
-
0030172363
-
Algorithm 657: A MATLAB toolbox for Schwarz-Christoffel mapping
-
T. A. DRISCOLL (1996): Algorithm 657: A MATLAB toolbox for Schwarz-Christoffel mapping. ACM Trans. Math. Soft., 22:168-186.
-
(1996)
ACM Trans. Math. Soft.
, vol.22
, pp. 168-186
-
-
Driscoll, T.A.1
-
3
-
-
0032205253
-
Numerical conformal mapping using cross-ratios and Delaunay triangulation
-
T. A. DRISCOLL, S. A. VAVASIS (1998): Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM J. Sci. Comput., 19:1783-1803.
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, pp. 1783-1803
-
-
Driscoll, T.A.1
Vavasis, S.A.2
-
4
-
-
0032653892
-
Curvilinear crosscuts of subdivision for a domain decomposition method in numerical conform mapping
-
M. I. FALCÃO, N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1999): Curvilinear crosscuts of subdivision for a domain decomposition method in numerical conform mapping. J. Comput. Appl. Math., 106:177-196.
-
(1999)
J. Comput. Appl. Math.
, vol.106
, pp. 177-196
-
-
Falcão, M.I.1
Papamichael, N.2
Stylianopoulos, N.S.3
-
5
-
-
0001728140
-
Moduli of long quadrilaterals and thick ring domains
-
D. GAIER, W. K. HAYMAN (1990): Moduli of long quadrilaterals and thick ring domains. Rend. Math. Appl. (7), 10:809-834.
-
(1990)
Rend. Math. Appl. (7)
, vol.10
, pp. 809-834
-
-
Gaier, D.1
Hayman, W.K.2
-
6
-
-
0001375327
-
On the computation of modules of long quadrilaterals
-
D. GAIER, W. K. HAYMAN (1991): On the computation of modules of long quadrilaterals. Constr. Approx., 7:453-467.
-
(1991)
Constr. Approx.
, vol.7
, pp. 453-467
-
-
Gaier, D.1
Hayman, W.K.2
-
7
-
-
0007303521
-
On the comparison of two numerical methods for conformal mapping
-
D. GAIER, N. PAPAMICHAEL (1987): On the comparison of two numerical methods for conformal mapping. IMA J. Numer. Anal., 7:261-282.
-
(1987)
IMA J. Numer. Anal.
, vol.7
, pp. 261-282
-
-
Gaier, D.1
Papamichael, N.2
-
8
-
-
0002330449
-
Remarks on Ahlfors' distortion theorem
-
W. K. HAYMAN (1948): Remarks on Ahlfors' distortion theorem. Quart. J. Math. (Oxford), 19:33-53.
-
(1948)
Quart. J. Math. (Oxford)
, vol.19
, pp. 33-53
-
-
Hayman, W.K.1
-
11
-
-
0001763745
-
A modified Schwarz-Chrisroffel transformation for elongated regions
-
L. H. HOWELL, L. N. TREFETHEN ( 1990): A modified Schwarz-Chrisroffel transformation for elongated regions. SIAM J. Sci. Statist. Comput., 11:928-949.
-
(1990)
SIAM J. Sci. Statist. Comput.
, vol.11
, pp. 928-949
-
-
Howell, L.H.1
Trefethen, L.N.2
-
12
-
-
21844490310
-
Conformal mapping of long quadrilaterals and thick doubly connected domains
-
R. LAUGESEN (1994): Conformal mapping of long quadrilaterals and thick doubly connected domains. Constr. Approx., 10:523-554.
-
(1994)
Constr. Approx.
, vol.10
, pp. 523-554
-
-
Laugesen, R.1
-
13
-
-
38249025612
-
Numerical conformal mapping onto a rectangle with applications to the solution of Laplacian problems
-
N. PAPAMICHAEL (1989): Numerical conformal mapping onto a rectangle with applications to the solution of Laplacian problems. J. Comput. Appl. Math., 28:63-83.
-
(1989)
J. Comput. Appl. Math.
, vol.28
, pp. 63-83
-
-
Papamichael, N.1
-
14
-
-
0007167574
-
On the numerical performance of a domain decomposition method for conformal mapping
-
Computational Methods and Function Theory 1989, St. Ruscheweyh (E. B. Saff, L. C. Salinas, R. S. Varga, eds.). Berlin: Springer-Verlag
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1990): On the numerical performance of a domain decomposition method for conformal mapping. In: Computational Methods and Function Theory 1989, St. Ruscheweyh (E. B. Saff, L. C. Salinas, R. S. Varga, eds.). Lecture Notes in Mathematics, Vol. 1435. pp. 155-169. Berlin: Springer-Verlag.
-
(1990)
Lecture Notes in Mathematics
, vol.1435
, pp. 155-169
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
15
-
-
0000297281
-
A domain decomposition method for conformal mapping onto a rectangle
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1991): A domain decomposition method for conformal mapping onto a rectangle. Constr. Approx., 7:349-379.
-
(1991)
Constr. Approx.
, vol.7
, pp. 349-379
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
16
-
-
0001487466
-
A domain decomposition method for approximating the conformal modules of long quadrilaterals
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1992): A domain decomposition method for approximating the conformal modules of long quadrilaterals. Numer. Math., 62:213-234.
-
(1992)
Numer. Math.
, vol.62
, pp. 213-234
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
17
-
-
38149146860
-
On the theory and application of a domain decomposition method for computing conformal modules
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1994): On the theory and application of a domain decomposition method for computing conformal modules. J. Comput. Appl. Math., 50:33-50.
-
(1994)
J. Comput. Appl. Math.
, vol.50
, pp. 33-50
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
18
-
-
0007303265
-
Domain decomposition for conformal maps
-
Computational Methods and Function Theory 1994 (R. M. Ali, St. Ruscheweyh, E. B. Saff. eds.). River Edge, NJ: World Scientific
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1995): Domain decomposition for conformal maps. In: Computational Methods and Function Theory 1994 (R. M. Ali, St. Ruscheweyh, E. B. Saff. eds.), Ser. Approx. Decompos., Vol. 5, pp. 267-291. River Edge, NJ: World Scientific.
-
(1995)
Ser. Approx. Decompos.
, vol.5
, pp. 267-291
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
19
-
-
0033249432
-
The asymptotic behavior of conformal modules of quadrilaterals with applications to the estimation of resistance values
-
N. PAPAMICHAEL, N. S. STYLIANOPOULOS (1999): The asymptotic behavior of conformal modules of quadrilaterals with applications to the estimation of resistance values. Constr. Approx., 15:109-134.
-
(1999)
Constr. Approx.
, vol.15
, pp. 109-134
-
-
Papamichael, N.1
Stylianopoulos, N.S.2
-
20
-
-
0002075581
-
Numerical computation of the Schwarz-Christoffel transformation
-
L. N. TREFETHEN (1980): Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Statist. Comput., 1:82-102.
-
(1980)
SIAM J. Sci. Statist. Comput.
, vol.1
, pp. 82-102
-
-
Trefethen, L.N.1
|