메뉴 건너뛰기




Volumn 38, Issue 1, 2001, Pages 18-35

Asymptotic analysis of the general stochastic epidemic with variable infectious periods

Author keywords

Epidemics; Limit theorems; Non Markovian model; Size of epidemic; Variable infectious period

Indexed keywords


EID: 0035533768     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/996986640     Document Type: Article
Times cited : (5)

References (31)
  • 2
    • 0000943691 scopus 로고
    • A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models
    • BALL, F. (1986). A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Prob. 18, 289-310.
    • (1986) Adv. Appl. Prob. , vol.18 , pp. 289-310
    • Ball, F.1
  • 3
    • 0000565682 scopus 로고
    • Poisson approximation for some epidemic models
    • BALL, F. G. AND BARBOUR, A. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27, 479-490.
    • (1990) J. Appl. Prob. , vol.27 , pp. 479-490
    • Ball, F.G.1    Barbour, A.D.2
  • 4
    • 0001023468 scopus 로고
    • Second-order approximation of random polygonal lines in the Donsker-Prokhorov invariance principle
    • BORISOV, I. S. AND BOROVKOV, A. A. (1987). Second-order approximation of random polygonal lines in the Donsker-Prokhorov invariance principle. Theory Prob. Appl. 31, 179-202.
    • (1987) Theory Prob. Appl. , vol.31 , pp. 179-202
    • Borisov, I.S.1    Borovkov, A.A.2
  • 6
    • 0007160306 scopus 로고    scopus 로고
    • Epidemic modelling: An introduction
    • Cambridge University Press
    • DALEY, D. J. AND GANI, J. (1999). Epidemic Modelling: an Introduction (Cambridge Studies Math. Biol. 15). Cambridge University Press.
    • (1999) Cambridge Studies Math. Biol. , vol.15
    • Daley, D.J.1    Gani, J.2
  • 7
    • 0000162773 scopus 로고
    • The distribution of the total size of an epidemic
    • University of California Press, Berkeley
    • DANIELS, H. E. (1967). The distribution of the total size of an epidemic. In Proc. 5th. Berkeley Symp. Math. Stat. Prob. University of California Press, Berkeley, pp. 281-293.
    • (1967) Proc. 5th. Berkeley Symp. Math. Stat. Prob. , pp. 281-293
    • Daniels, H.E.1
  • 9
    • 0013826540 scopus 로고
    • On the partial differential equation of epidemic theory. I
    • GANI, J. (1965). On the partial differential equation of epidemic theory. I. Biometrika 52, 617-622.
    • (1965) Biometrika , vol.52 , pp. 617-622
    • Gani, J.1
  • 10
    • 0000104924 scopus 로고
    • On the general stochastic epidemic
    • University of California Press, Berkeley
    • GANI, J. (1967). On the general stochastic epidemic. In Proc. 5th Berkeley Symp. Math. Statist. Prob. University of California Press, Berkeley, pp. 271-279.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist. Prob. , pp. 271-279
    • Gani, J.1
  • 11
    • 0002708819 scopus 로고
    • A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes
    • LEFÈVRE, C. AND PICARD, P. (1990). A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 25-48.
    • (1990) Adv. Appl. Prob. , vol.22 , pp. 25-48
    • Lefèvre, C.1    Picard, P.2
  • 12
    • 0001107279 scopus 로고
    • Poisson approximation for the final state of a generalized epidemic process
    • LEFÈVRE, C. AND UTEV, S. (1995). Poisson approximation for the final state of a generalized epidemic process. Ann. Prob. 23, 1139-1162.
    • (1995) Ann. Prob. , vol.23 , pp. 1139-1162
    • Lefèvre, C.1    Utev, S.2
  • 13
    • 0007166942 scopus 로고
    • Stochastic population theories
    • Springer, Berlin
    • LUDWIG, D. (1974). Stochastic Population Theories (Lecture Notes Biomath. 3). Springer, Berlin.
    • (1974) Lecture Notes Biomath. , vol.3
    • Ludwig, D.1
  • 14
    • 0000618154 scopus 로고
    • Symmetric sampling procedures, general epidemic processes and their threshold limit theorems
    • MARTIN-LÖF, A. (1986). Symmetric sampling procedures, general epidemic processes and their threshold limit theorems. J. Appl. Prob. 23, 265-282.
    • (1986) J. Appl. Prob. , vol.23 , pp. 265-282
    • Martin-Löf, A.1
  • 15
    • 0032259304 scopus 로고    scopus 로고
    • The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier
    • MARTIN-LÖF, A. (1998). The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. J. Appl. Prob. 35, 671-682.
    • (1998) J. Appl. Prob. , vol.35 , pp. 671-682
    • Martin-Löf, A.1
  • 16
    • 0002647627 scopus 로고
    • The asymptotic analysis of a stochastic model of an epidemic
    • NAGAEV, A. V. AND STARTSEV, A. N. (1970). The asymptotic analysis of a stochastic model of an epidemic. Theory Prob. Appl. 15, 98-107.
    • (1970) Theory Prob. Appl. , vol.15 , pp. 98-107
    • Nagaev, A.V.1    Startsev, A.N.2
  • 17
    • 0000729953 scopus 로고
    • A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes
    • PICARD, P. AND LEFÈVRE, C. (1990). A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 262-294.
    • (1990) Adv. Appl. Prob. , vol.22 , pp. 262-294
    • Picard, P.1    Lefèvre, C.2
  • 18
    • 0001694893 scopus 로고
    • Asymptotic final-size distribution for some chain-binomial processes
    • SCALIA-TOMBA, G. (1985). Asymptotic final-size distribution for some chain-binomial processes. Adv. Appl. Prob. 17, 477-495.
    • (1985) Adv. Appl. Prob. , vol.17 , pp. 477-495
    • Scalia-Tomba, G.1
  • 19
    • 0001088291 scopus 로고
    • On the asymptotic final size distribution of epidemic in heterogeneous population
    • Stochastic Processes in Epidemic Theory, eds J.-P. Gabriel, C. Lefèvre and P. Picard. Springer, New York
    • SCALIA-TOMBA, G. (1990). On the asymptotic final size distribution of epidemic in heterogeneous population. In Stochastic Processes in Epidemic Theory (Lecture Notes Biomath. 86), eds J.-P. Gabriel, C. Lefèvre and P. Picard. Springer, New York.
    • (1990) Lecture Notes Biomath. , vol.86
    • Scalia-Tomba, G.1
  • 20
    • 0000045988 scopus 로고
    • On the asymptotical distribution of the size of a stochastic epidemic
    • SELLKE, T. (1983). On the asymptotical distribution of the size of a stochastic epidemic. J. Appl. Prob. 20, 390-394.
    • (1983) J. Appl. Prob. , vol.20 , pp. 390-394
    • Sellke, T.1
  • 21
    • 0013839597 scopus 로고
    • Solution of the general stochastic epidemic theory
    • SISKIND, V. (1965). Solution of the general stochastic epidemic theory. Biometrika 52, 617-622.
    • (1965) Biometrika , vol.52 , pp. 617-622
    • Siskind, V.1
  • 22
    • 0007169539 scopus 로고
    • Limit theorems for the epidemic size in the general stochastic model
    • Fan, Tashkent, in Russian
    • STARTSEV, A. N. (1971). Limit theorems for the epidemic size in the general stochastic model. In Random Processes and Statistical Decision. Fan, Tashkent, pp. 60-73 (in Russian).
    • (1971) Random Processes and Statistical Decision , pp. 60-73
    • Startsev, A.N.1
  • 23
    • 0001762314 scopus 로고
    • On approximation conditions of the distribution of the maximum sums of independent random variables
    • STARTSEV, A. N. (1988). On approximation conditions of the distribution of the maximum sums of independent random variables. Ann. Acad. Sci. Fennicae, Ser. A I. Math. 13, 269-275.
    • (1988) Ann. Acad. Sci. Fennicae, Ser. A I. Math. , vol.13 , pp. 269-275
    • Startsev, A.N.1
  • 24
    • 0007289172 scopus 로고
    • On distribution of the first passage time for a class of a two-dimensional Markov random walk
    • STARTSEV, A. N. (1994). On distribution of the first passage time for a class of a two-dimensional Markov random walk. Uzbek Math. J. 4, 60-66.
    • (1994) Uzbek Math. J. , vol.4 , pp. 60-66
    • Startsev, A.N.1
  • 25
    • 0039333695 scopus 로고    scopus 로고
    • On epidemic size distribution in a non-Markovian model
    • STARTSEV, A. N. (1997). On epidemic size distribution in a non-Markovian model. Theory Prob. Appl. 41, 730-740.
    • (1997) Theory Prob. Appl. , vol.41 , pp. 730-740
    • Startsev, A.N.1
  • 26
    • 0002373491 scopus 로고
    • Limit theorems for the epidemic size in a generalized probability model
    • ed. S. Kh. Sirazhdinov. Fan, Tashkent, in Russian
    • STARTSEV, A. N. AND CHAǏ, Z. S. (1987). Limit theorems for the epidemic size in a generalized probability model. In Probability Models and Mathematical Statistics, ed. S. Kh. Sirazhdinov. Fan, Tashkent, pp. 92-105 (in Russian).
    • (1987) Probability Models and Mathematical Statistics , pp. 92-105
    • Startsev, A.N.1    Chaǐ, Z.S.2
  • 27
    • 0001000365 scopus 로고
    • Threshold limit theorems for some epidemic processes
    • VON BAHR, B. AND MARTIN-LÖF, A. (1980). Threshold limit theorems for some epidemic processes. Adv. Appl. Prob. 12, 319-349.
    • (1980) Adv. Appl. Prob. , vol.12 , pp. 319-349
    • Von Bahr, B.1    Martin-Löf, A.2
  • 28
    • 0007168949 scopus 로고
    • Gaussian approximation of some closed stochastic epidemic models
    • WANG, J. S. (1977). Gaussian approximation of some closed stochastic epidemic models. J. Appl. Prob. 14, 221-231.
    • (1977) J. Appl. Prob. , vol.14 , pp. 221-231
    • Wang, J.S.1
  • 29
    • 0007299336 scopus 로고
    • On the size distribution for some epidemic models
    • WATSON, R. (1980). On the size distribution for some epidemic models. J. Appl. Prob. 17, 912-921.
    • (1980) J. Appl. Prob. , vol.17 , pp. 912-921
    • Watson, R.1
  • 30
    • 0001591406 scopus 로고
    • On the spread of epidemics by carriers
    • WEISS, G. H. (1965). On the spread of epidemics by carriers. Biometrics 21, 481-490.
    • (1965) Biometrics , vol.21 , pp. 481-490
    • Weiss, G.H.1
  • 31
    • 0001236565 scopus 로고
    • The outcome of stochastic epidemic
    • WHITTLE, P. (1955). The outcome of stochastic epidemic. Biometrika 42, 116-122.
    • (1955) Biometrika , vol.42 , pp. 116-122
    • Whittle, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.