-
2
-
-
0000943691
-
A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models
-
BALL, F. (1986). A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Prob. 18, 289-310.
-
(1986)
Adv. Appl. Prob.
, vol.18
, pp. 289-310
-
-
Ball, F.1
-
3
-
-
0000565682
-
Poisson approximation for some epidemic models
-
BALL, F. G. AND BARBOUR, A. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27, 479-490.
-
(1990)
J. Appl. Prob.
, vol.27
, pp. 479-490
-
-
Ball, F.G.1
Barbour, A.D.2
-
4
-
-
0001023468
-
Second-order approximation of random polygonal lines in the Donsker-Prokhorov invariance principle
-
BORISOV, I. S. AND BOROVKOV, A. A. (1987). Second-order approximation of random polygonal lines in the Donsker-Prokhorov invariance principle. Theory Prob. Appl. 31, 179-202.
-
(1987)
Theory Prob. Appl.
, vol.31
, pp. 179-202
-
-
Borisov, I.S.1
Borovkov, A.A.2
-
6
-
-
0007160306
-
Epidemic modelling: An introduction
-
Cambridge University Press
-
DALEY, D. J. AND GANI, J. (1999). Epidemic Modelling: an Introduction (Cambridge Studies Math. Biol. 15). Cambridge University Press.
-
(1999)
Cambridge Studies Math. Biol.
, vol.15
-
-
Daley, D.J.1
Gani, J.2
-
7
-
-
0000162773
-
The distribution of the total size of an epidemic
-
University of California Press, Berkeley
-
DANIELS, H. E. (1967). The distribution of the total size of an epidemic. In Proc. 5th. Berkeley Symp. Math. Stat. Prob. University of California Press, Berkeley, pp. 281-293.
-
(1967)
Proc. 5th. Berkeley Symp. Math. Stat. Prob.
, pp. 281-293
-
-
Daniels, H.E.1
-
9
-
-
0013826540
-
On the partial differential equation of epidemic theory. I
-
GANI, J. (1965). On the partial differential equation of epidemic theory. I. Biometrika 52, 617-622.
-
(1965)
Biometrika
, vol.52
, pp. 617-622
-
-
Gani, J.1
-
10
-
-
0000104924
-
On the general stochastic epidemic
-
University of California Press, Berkeley
-
GANI, J. (1967). On the general stochastic epidemic. In Proc. 5th Berkeley Symp. Math. Statist. Prob. University of California Press, Berkeley, pp. 271-279.
-
(1967)
Proc. 5th Berkeley Symp. Math. Statist. Prob.
, pp. 271-279
-
-
Gani, J.1
-
11
-
-
0002708819
-
A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes
-
LEFÈVRE, C. AND PICARD, P. (1990). A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 25-48.
-
(1990)
Adv. Appl. Prob.
, vol.22
, pp. 25-48
-
-
Lefèvre, C.1
Picard, P.2
-
12
-
-
0001107279
-
Poisson approximation for the final state of a generalized epidemic process
-
LEFÈVRE, C. AND UTEV, S. (1995). Poisson approximation for the final state of a generalized epidemic process. Ann. Prob. 23, 1139-1162.
-
(1995)
Ann. Prob.
, vol.23
, pp. 1139-1162
-
-
Lefèvre, C.1
Utev, S.2
-
13
-
-
0007166942
-
Stochastic population theories
-
Springer, Berlin
-
LUDWIG, D. (1974). Stochastic Population Theories (Lecture Notes Biomath. 3). Springer, Berlin.
-
(1974)
Lecture Notes Biomath.
, vol.3
-
-
Ludwig, D.1
-
14
-
-
0000618154
-
Symmetric sampling procedures, general epidemic processes and their threshold limit theorems
-
MARTIN-LÖF, A. (1986). Symmetric sampling procedures, general epidemic processes and their threshold limit theorems. J. Appl. Prob. 23, 265-282.
-
(1986)
J. Appl. Prob.
, vol.23
, pp. 265-282
-
-
Martin-Löf, A.1
-
15
-
-
0032259304
-
The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier
-
MARTIN-LÖF, A. (1998). The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. J. Appl. Prob. 35, 671-682.
-
(1998)
J. Appl. Prob.
, vol.35
, pp. 671-682
-
-
Martin-Löf, A.1
-
16
-
-
0002647627
-
The asymptotic analysis of a stochastic model of an epidemic
-
NAGAEV, A. V. AND STARTSEV, A. N. (1970). The asymptotic analysis of a stochastic model of an epidemic. Theory Prob. Appl. 15, 98-107.
-
(1970)
Theory Prob. Appl.
, vol.15
, pp. 98-107
-
-
Nagaev, A.V.1
Startsev, A.N.2
-
17
-
-
0000729953
-
A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes
-
PICARD, P. AND LEFÈVRE, C. (1990). A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 262-294.
-
(1990)
Adv. Appl. Prob.
, vol.22
, pp. 262-294
-
-
Picard, P.1
Lefèvre, C.2
-
18
-
-
0001694893
-
Asymptotic final-size distribution for some chain-binomial processes
-
SCALIA-TOMBA, G. (1985). Asymptotic final-size distribution for some chain-binomial processes. Adv. Appl. Prob. 17, 477-495.
-
(1985)
Adv. Appl. Prob.
, vol.17
, pp. 477-495
-
-
Scalia-Tomba, G.1
-
19
-
-
0001088291
-
On the asymptotic final size distribution of epidemic in heterogeneous population
-
Stochastic Processes in Epidemic Theory, eds J.-P. Gabriel, C. Lefèvre and P. Picard. Springer, New York
-
SCALIA-TOMBA, G. (1990). On the asymptotic final size distribution of epidemic in heterogeneous population. In Stochastic Processes in Epidemic Theory (Lecture Notes Biomath. 86), eds J.-P. Gabriel, C. Lefèvre and P. Picard. Springer, New York.
-
(1990)
Lecture Notes Biomath.
, vol.86
-
-
Scalia-Tomba, G.1
-
20
-
-
0000045988
-
On the asymptotical distribution of the size of a stochastic epidemic
-
SELLKE, T. (1983). On the asymptotical distribution of the size of a stochastic epidemic. J. Appl. Prob. 20, 390-394.
-
(1983)
J. Appl. Prob.
, vol.20
, pp. 390-394
-
-
Sellke, T.1
-
21
-
-
0013839597
-
Solution of the general stochastic epidemic theory
-
SISKIND, V. (1965). Solution of the general stochastic epidemic theory. Biometrika 52, 617-622.
-
(1965)
Biometrika
, vol.52
, pp. 617-622
-
-
Siskind, V.1
-
22
-
-
0007169539
-
Limit theorems for the epidemic size in the general stochastic model
-
Fan, Tashkent, in Russian
-
STARTSEV, A. N. (1971). Limit theorems for the epidemic size in the general stochastic model. In Random Processes and Statistical Decision. Fan, Tashkent, pp. 60-73 (in Russian).
-
(1971)
Random Processes and Statistical Decision
, pp. 60-73
-
-
Startsev, A.N.1
-
23
-
-
0001762314
-
On approximation conditions of the distribution of the maximum sums of independent random variables
-
STARTSEV, A. N. (1988). On approximation conditions of the distribution of the maximum sums of independent random variables. Ann. Acad. Sci. Fennicae, Ser. A I. Math. 13, 269-275.
-
(1988)
Ann. Acad. Sci. Fennicae, Ser. A I. Math.
, vol.13
, pp. 269-275
-
-
Startsev, A.N.1
-
24
-
-
0007289172
-
On distribution of the first passage time for a class of a two-dimensional Markov random walk
-
STARTSEV, A. N. (1994). On distribution of the first passage time for a class of a two-dimensional Markov random walk. Uzbek Math. J. 4, 60-66.
-
(1994)
Uzbek Math. J.
, vol.4
, pp. 60-66
-
-
Startsev, A.N.1
-
25
-
-
0039333695
-
On epidemic size distribution in a non-Markovian model
-
STARTSEV, A. N. (1997). On epidemic size distribution in a non-Markovian model. Theory Prob. Appl. 41, 730-740.
-
(1997)
Theory Prob. Appl.
, vol.41
, pp. 730-740
-
-
Startsev, A.N.1
-
26
-
-
0002373491
-
Limit theorems for the epidemic size in a generalized probability model
-
ed. S. Kh. Sirazhdinov. Fan, Tashkent, in Russian
-
STARTSEV, A. N. AND CHAǏ, Z. S. (1987). Limit theorems for the epidemic size in a generalized probability model. In Probability Models and Mathematical Statistics, ed. S. Kh. Sirazhdinov. Fan, Tashkent, pp. 92-105 (in Russian).
-
(1987)
Probability Models and Mathematical Statistics
, pp. 92-105
-
-
Startsev, A.N.1
Chaǐ, Z.S.2
-
27
-
-
0001000365
-
Threshold limit theorems for some epidemic processes
-
VON BAHR, B. AND MARTIN-LÖF, A. (1980). Threshold limit theorems for some epidemic processes. Adv. Appl. Prob. 12, 319-349.
-
(1980)
Adv. Appl. Prob.
, vol.12
, pp. 319-349
-
-
Von Bahr, B.1
Martin-Löf, A.2
-
28
-
-
0007168949
-
Gaussian approximation of some closed stochastic epidemic models
-
WANG, J. S. (1977). Gaussian approximation of some closed stochastic epidemic models. J. Appl. Prob. 14, 221-231.
-
(1977)
J. Appl. Prob.
, vol.14
, pp. 221-231
-
-
Wang, J.S.1
-
29
-
-
0007299336
-
On the size distribution for some epidemic models
-
WATSON, R. (1980). On the size distribution for some epidemic models. J. Appl. Prob. 17, 912-921.
-
(1980)
J. Appl. Prob.
, vol.17
, pp. 912-921
-
-
Watson, R.1
-
30
-
-
0001591406
-
On the spread of epidemics by carriers
-
WEISS, G. H. (1965). On the spread of epidemics by carriers. Biometrics 21, 481-490.
-
(1965)
Biometrics
, vol.21
, pp. 481-490
-
-
Weiss, G.H.1
-
31
-
-
0001236565
-
The outcome of stochastic epidemic
-
WHITTLE, P. (1955). The outcome of stochastic epidemic. Biometrika 42, 116-122.
-
(1955)
Biometrika
, vol.42
, pp. 116-122
-
-
Whittle, P.1
|