-
1
-
-
25544479908
-
Realization of the Schwinger term in the Gauss law and the possibility of a correct quantization of a theory win anomalies
-
L. D. Faddeev and S. L. Shatashvili, "Realization of the Schwinger term in the Gauss law and the possibility of a correct quantization of a theory win anomalies," Phys. Lett. B 167, 225-228 (1986).
-
(1986)
Phys. Lett. B
, vol.167
, pp. 225-228
-
-
Faddeev, L.D.1
Shatashvili, S.L.2
-
2
-
-
0001181692
-
Quantization of a D = 2 anomalous theory
-
S. Shatashvili, "Quantization of a D = 2 anomalous theory," Theor. Math. Phys. 71, 366-370 (1987).
-
(1987)
Theor. Math. Phys.
, vol.71
, pp. 366-370
-
-
Shatashvili, S.1
-
3
-
-
0032033952
-
Lie group valued moment maps
-
A. Alekseev, A. Malkin, and E. Meinrenken, "Lie group valued moment maps," J. Diff. Geom. 48, 445-495 (1998).
-
(1998)
J. Diff. Geom.
, vol.48
, pp. 445-495
-
-
Alekseev, A.1
Malkin, A.2
Meinrenken, E.3
-
5
-
-
18044382506
-
D-branes in the WZW model
-
A. Alekseev and V. Schomerus, "D-branes in the WZW model," Phys. Rev. D 60, 061901 (1999).
-
(1999)
Phys. Rev. D
, vol.60
, pp. 61901
-
-
Alekseev, A.1
Schomerus, V.2
-
8
-
-
33646049373
-
D-branes and deformation quantization
-
V. Schomerus, "D-branes and deformation quantization," J. High Energy Phys. 9906, 30 (1999).
-
(1999)
J. High Energy Phys.
, vol.9906
, pp. 30
-
-
Schomerus, V.1
-
9
-
-
33646071222
-
Non-commutative world-volume geometries: Branes on SU(2) and fuzzy spheres
-
A. Alekseev, A. Recknagel, and V. Schomerus, "Non-commutative world-volume Geometries: Branes on SU(2) and fuzzy spheres," J. High Energy Phys. 9909, 23 (1999).
-
(1999)
J. High Energy Phys.
, vol.9909
, pp. 23
-
-
Alekseev, A.1
Recknagel, A.2
Schomerus, V.3
-
11
-
-
0010129980
-
Quantization of nonabelian gauge theories
-
V. N. Gribov, "Quantization of nonabelian gauge theories," Nucl. Phys. B 139, 1 (1978).
-
(1978)
Nucl. Phys. B
, vol.139
, pp. 1
-
-
Gribov, V.N.1
-
12
-
-
0007249366
-
-
in preparation, absence of Gribov problems is guaranteed, e.g., if the Poisson map φ is complete and C is simply connected
-
As shown in M. Bojowald and T. Strobl, "Poisson Geometry and Descent Equations," in preparation, absence of Gribov problems is guaranteed, e.g., if the Poisson map φ is complete and C is simply connected.
-
Poisson Geometry and Descent Equations
-
-
Bojowald, M.1
Strobl, T.2
|