-
1
-
-
33750546062
-
Quantization of relativistic systems with constraints
-
1. Fradkin, E.S. and Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224-226 (1975); Batalin, I.A. and Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69, 309-312 (1977); Batalin, I.A. and Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122, 157-164 (1983); Batalin, I.A. and Fradkin, E.S.: Operatorial quantization of relativistic dynamical systems subject to first class constraints. Phys. Lett. B 128, 303-308 (1983); Batalin, I.A., Fradkin, E.S.: Operatorial quantization of dynamical systems subject to constraints. A further study of the construction. Ann Inst. Henri Poincaré 49, 145-214 (1988)
-
(1975)
Phys. Lett. B
, vol.55
, pp. 224-226
-
-
Fradkin, E.S.1
Vilkovisky, G.A.2
-
2
-
-
0040969973
-
Relativistic S-matrix of dynamical systems with boson and fermion constraints
-
1. Fradkin, E.S. and Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224-226 (1975); Batalin, I.A. and Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69, 309-312 (1977); Batalin, I.A. and Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122, 157-164 (1983); Batalin, I.A. and Fradkin, E.S.: Operatorial quantization of relativistic dynamical systems subject to first class constraints. Phys. Lett. B 128, 303-308 (1983); Batalin, I.A., Fradkin, E.S.: Operatorial quantization of dynamical systems subject to constraints. A further study of the construction. Ann Inst. Henri Poincaré 49, 145-214 (1988)
-
(1977)
Phys. Lett. B
, vol.69
, pp. 309-312
-
-
Batalin, I.A.1
Vilkovisky, G.A.2
-
3
-
-
0000898297
-
A generalized canonical formalism and quantization of reducible gauge theories
-
1. Fradkin, E.S. and Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224-226 (1975); Batalin, I.A. and Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69, 309-312 (1977); Batalin, I.A. and Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122, 157-164 (1983); Batalin, I.A. and Fradkin, E.S.: Operatorial quantization of relativistic dynamical systems subject to first class constraints. Phys. Lett. B 128, 303-308 (1983); Batalin, I.A., Fradkin, E.S.: Operatorial quantization of dynamical systems subject to constraints. A further study of the construction. Ann Inst. Henri Poincaré 49, 145-214 (1988)
-
(1983)
Phys. Lett. B
, vol.122
, pp. 157-164
-
-
Batalin, I.A.1
Fradkin, E.S.2
-
4
-
-
0007220763
-
Operatorial quantization of relativistic dynamical systems subject to first class constraints
-
1. Fradkin, E.S. and Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224-226 (1975); Batalin, I.A. and Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69, 309-312 (1977); Batalin, I.A. and Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122, 157-164 (1983); Batalin, I.A. and Fradkin, E.S.: Operatorial quantization of relativistic dynamical systems subject to first class constraints. Phys. Lett. B 128, 303-308 (1983); Batalin, I.A., Fradkin, E.S.: Operatorial quantization of dynamical systems subject to constraints. A further study of the construction. Ann Inst. Henri Poincaré 49, 145-214 (1988)
-
(1983)
Phys. Lett. B
, vol.128
, pp. 303-308
-
-
Batalin, I.A.1
Fradkin, E.S.2
-
5
-
-
33750546062
-
Operatorial quantization of dynamical systems subject to constraints. A further study of the construction
-
1. Fradkin, E.S. and Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224-226 (1975); Batalin, I.A. and Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69, 309-312 (1977); Batalin, I.A. and Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122, 157-164 (1983); Batalin, I.A. and Fradkin, E.S.: Operatorial quantization of relativistic dynamical systems subject to first class constraints. Phys. Lett. B 128, 303-308 (1983); Batalin, I.A., Fradkin, E.S.: Operatorial quantization of dynamical systems subject to constraints. A further study of the construction. Ann Inst. Henri Poincaré 49, 145-214 (1988)
-
(1988)
Ann Inst. Henri Poincaré
, vol.49
, pp. 145-214
-
-
Batalin, I.A.1
Fradkin, E.S.2
-
7
-
-
25544479908
-
Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies
-
3. Faddeev, L.D., Shatashvili, S.L.: Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies. Phys. Lett. B 167, 225 (1986)
-
(1986)
Phys. Lett. B
, vol.167
, pp. 225
-
-
Faddeev, L.D.1
Shatashvili, S.L.2
-
8
-
-
0010202465
-
Operator quantization of dynamical systems with irreducible first and second class constraints
-
4. Batalin, I.A. and Fradkin, E.S.: Operator Quantization of Dynamical Systems with Irreducible First and Second Class Constraints. Phys. Lett. B 180, 157 (1986)
-
(1986)
Phys. Lett. B
, vol.180
, pp. 157
-
-
Batalin, I.A.1
Fradkin, E.S.2
-
9
-
-
0013163006
-
Operatorial quantization of dynamical systems subject to second class constraints
-
5. Batalin, I.A. and Fradkin, E.S.: Operatorial Quantization of Dynamical Systems Subject to Second Class Constraints. Nucl. Phys. B 279, 514 (1987)
-
(1987)
Nucl. Phys. B
, vol.279
, pp. 514
-
-
Batalin, I.A.1
Fradkin, E.S.2
-
10
-
-
0001481922
-
Existence theorem for the effective gauge algebra in the generalized canonical formalism with Abelian conversion of second class constraints
-
6. Batalin, I.A. and Tyutin, I.V.: Existence theorem for the effective gauge algebra in the generalized canonical formalism with Abelian conversion of second class constraints. Int. J. Mod. Phys. A 6, 3255 (1991)
-
(1991)
Int. J. Mod. Phys. A
, vol.6
, pp. 3255
-
-
Batalin, I.A.1
Tyutin, I.V.2
-
12
-
-
0003885832
-
Higher spin gauge theories: Star-product and AdS space
-
Contributed article to, M. Shifman, ed., Singapore: World Scientific, hep-th/9910096
-
8. Vasiliev, M.A.: Higher Spin Gauge Theories: Star-Product and AdS Space. Contributed article to Gelfand's Memorial Volume, M. Shifman, ed., Singapore: World Scientific, hep-th/9910096
-
Gelfand's Memorial Volume
-
-
Vasiliev, M.A.1
-
13
-
-
0007084601
-
Noncommutative geometry and string theory
-
hep-th/9908142
-
9. Seiberg, N. and Witten, E.: Noncommutative Geometry and String Theory. JHEP 9909 (1999) 032, hep-th/9908142
-
(1999)
JHEP
, vol.9909
, pp. 32
-
-
Seiberg, N.1
Witten, E.2
-
14
-
-
0041524804
-
Noncommutative geometry and matrix theory: Compactification on tori
-
hep-th/9711162
-
10. Connes, A., Douglas, M.R. and Schwarz, A.: Noncommutative Geometry and Matrix Theory: Compactification on tori. JHEP 9802:003 (1998), hep-th/9711162
-
(1998)
JHEP
, vol.9802
, pp. 3
-
-
Connes, A.1
Douglas, M.R.2
Schwarz, A.3
-
15
-
-
0001545426
-
Quantization
-
11. Berezin, F.: Quantization. Izv. Mat. Nauk 38, 1109-1165 (1974)
-
(1974)
Izv. Mat. Nauk
, vol.38
, pp. 1109-1165
-
-
Berezin, F.1
-
16
-
-
33744769996
-
Deformation theory and quantization. I. Deformations of symplectic structures
-
12. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation Theory and Quantization. I. Deformations of Symplectic Structures. Ann. Phys. 111, 61 (1978)
-
(1978)
Ann. Phys.
, vol.111
, pp. 61
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
17
-
-
0000898844
-
Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds
-
13. De Wilde, M. and Lecomte, P.B.A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487-496 (1983)
-
(1983)
Lett. Math. Phys.
, vol.7
, pp. 487-496
-
-
De Wilde, M.1
Lecomte, P.B.A.2
-
18
-
-
84972506966
-
A simple geometrical construction of deformation quantization
-
14. Fedosov, B.V.: A Simple Geometrical Construction of Deformation Quantization. J. Diff. Geom. 40, 213-238 (1994)
-
(1994)
J. Diff. Geom.
, vol.40
, pp. 213-238
-
-
Fedosov, B.V.1
-
19
-
-
0003339602
-
Deformation quantization and index theory
-
Berlin: Akademie Verlag, 325 p
-
15. Fedosov, B.: Deformation quantization and index theory. Berlin: Akademie Verlag, 1996, 325 p., (Mathematical topics 9)
-
(1996)
Mathematical Topics
, vol.9
-
-
Fedosov, B.1
-
23
-
-
0001222414
-
Operator quantization of dynamical systems with curved phase space
-
19. Batalin, G. and Fradkin, E.S.: Operator Quantization of Dynamical Systems with Curved Phase Space. Nucl. Phys. B 326, 701 (1989)
-
(1989)
Nucl. Phys. B
, vol.326
, pp. 701
-
-
Batalin, G.1
Fradkin, E.S.2
-
24
-
-
0000585377
-
BFV approach to geometric quantization
-
20. Fradkin, E.S. and Linetsky, V.Y.: BFV approach to geometric quantization. Nucl. Phys. B 431, 569 (1994); BFV Quantization on Hermitian Symmetric Spaces. Nucl. Phys. B 444, 577-601 (1995)
-
(1994)
Nucl. Phys. B
, vol.431
, pp. 569
-
-
Fradkin, E.S.1
Linetsky, V.Y.2
-
25
-
-
0007286841
-
BFV quantization on Hermitian symmetric spaces
-
20. Fradkin, E.S. and Linetsky, V.Y.: BFV approach to geometric quantization. Nucl. Phys. B 431, 569 (1994); BFV Quantization on Hermitian Symmetric Spaces. Nucl. Phys. B 444, 577-601 (1995)
-
(1995)
Nucl. Phys. B
, vol.444
, pp. 577-601
-
-
-
26
-
-
4243215005
-
Generalized canonical quantization of dynamical systems with constraints and curved phase space
-
21. Batalin, I.A., Fradkin, E.S. and Fradkina, T.E.: Generalized Canonical Quantization of Dynamical Systems with Constraints and Curved Phase Space. Nucl. Phys. B 332, 723 (1990)
-
(1990)
Nucl. Phys. B
, vol.332
, pp. 723
-
-
Batalin, I.A.1
Fradkin, E.S.2
Fradkina, T.E.3
-
29
-
-
0000458608
-
BRST cohomology in classical mechanics
-
24. Henneaux, M. and Teitelboim, C.: BRST Cohomology in Classical Mechanics. Commun. Math. Phys. 115, 213-230 (1988); Fisch, J., Henneaux, M., Stasheff, J. and Teitelboim, C.: Existence, Uniquiness and Cohomology of the Classical BRST Charge with Ghosts of Ghosts. Commun. Math. Phys. 120, 379-407 (1989)
-
(1988)
Commun. Math. Phys.
, vol.115
, pp. 213-230
-
-
Henneaux, M.1
Teitelboim, C.2
-
30
-
-
0001085242
-
Existence, uniquiness and cohomology of the classical BRST charge with ghosts of ghosts
-
24. Henneaux, M. and Teitelboim, C.: BRST Cohomology in Classical Mechanics. Commun. Math. Phys. 115, 213-230 (1988); Fisch, J., Henneaux, M., Stasheff, J. and Teitelboim, C.: Existence, Uniquiness and Cohomology of the Classical BRST Charge with Ghosts of Ghosts. Commun. Math. Phys. 120, 379-407 (1989)
-
(1989)
Commun. Math. Phys.
, vol.120
, pp. 379-407
-
-
Fisch, J.1
Henneaux, M.2
Stasheff, J.3
Teitelboim, C.4
-
31
-
-
0141580279
-
Hamiltonian form of the path integral for theories with a gauge freedom
-
25. Henneaux, M.: Hamiltonian Form of the Path Integral for Theories with a Gauge Freedom. Phys. Rep. 126, 1 (1985)
-
(1985)
Phys. Rep.
, vol.126
, pp. 1
-
-
Henneaux, M.1
-
32
-
-
0002501450
-
Dynamic constraint systems: Homologic approach
-
26. Dubois-Violette, M.: Dynamic Constraint Systems: Homologic Approach. Ann. Inst. Fourier Grenoble 37, 45-47 (1987)
-
(1987)
Ann. Inst. Fourier Grenoble
, vol.37
, pp. 45-47
-
-
Dubois-Violette, M.1
-
33
-
-
33744741883
-
Gauge algebra and quantization
-
27. Batalin, I.A. and Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B102, 27 (1981); Quantization of gauge theories with linearly dependent generators. Phys. Rev. D28, 2567 (1983)
-
(1981)
Phys. Lett.
, vol.B102
, pp. 27
-
-
Batalin, I.A.1
Vilkovisky, G.A.2
-
34
-
-
30244485015
-
Quantization of gauge theories with linearly dependent generators
-
27. Batalin, I.A. and Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B102, 27 (1981); Quantization of gauge theories with linearly dependent generators. Phys. Rev. D28, 2567 (1983)
-
(1983)
Phys. Rev.
, vol.D28
, pp. 2567
-
-
-
35
-
-
0002835016
-
Consistent interactions between gauge fields: The cohomological approach
-
Moscow, Russia, 24-31 Aug. hep-th/9712226
-
28. Henneaux, M.: Consistent interactions between gauge fields: The cohomological approach. Talk given at Conference on Secondary Calculus and Cohomological Physics, Moscow, Russia, 24-31 Aug. 1997, hep-th/9712226; Glenn Barnich, Friedemann Brandt, Marc Henneaux: Local BRST cohomology in gauge theories. hep-th/0002245
-
(1997)
Talk Given at Conference on Secondary Calculus and Cohomological Physics
-
-
Henneaux, M.1
-
36
-
-
0007276614
-
-
hep-th/0002245
-
28. Henneaux, M.: Consistent interactions between gauge fields: The cohomological approach. Talk given at Conference on Secondary Calculus and Cohomological Physics, Moscow, Russia, 24-31 Aug. 1997, hep-th/9712226; Glenn Barnich, Friedemann Brandt, Marc Henneaux: Local BRST cohomology in gauge theories. hep-th/0002245
-
Local BRST Cohomology in Gauge Theories
-
-
Barnich, G.1
Brandt, F.2
Henneaux, M.3
|