메뉴 건너뛰기




Volumn 21, Issue 1, 2001, Pages 421-438

Using resolvent conditions to obtain new stability results for θ-methods for delay differential equations

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIAL EQUATIONS;

EID: 0035529773     PISSN: 02724979     EISSN: None     Source Type: Journal    
DOI: 10.1093/imanum/21.1.421     Document Type: Article
Times cited : (6)

References (11)
  • 1
    • 0007057928 scopus 로고
    • On the asymptotic stability of θ-methods for delay differential equations
    • CALVO, M. & GRANDE, T. 1988 On the asymptotic stability of θ-methods for delay differential equations. Numer. Math. 54, 257-269.
    • (1988) Numer. Math. , vol.54 , pp. 257-269
    • Calvo, M.1    Grande, T.2
  • 3
    • 34249839190 scopus 로고
    • A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations
    • HOUT, K. J. IN 'T 1992 A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations. BIT 32, 634-649.
    • (1992) BIT , vol.32 , pp. 634-649
    • Hout, K.J.I.1
  • 4
    • 0001044031 scopus 로고
    • Asymptotic stability analysis of θ-methods for functional differential equations
    • JACKIEWICZ, Z. 1984 Asymptotic stability analysis of θ-methods for functional differential equations. Numer. Math. 43, 389-396.
    • (1984) Numer. Math. , vol.43 , pp. 389-396
    • Jackiewicz, Z.1
  • 5
    • 0000714267 scopus 로고
    • The stability of the θ-methods in the numerical solution of delay differential equations
    • LIU, M. Z. & SPIJKER, M. N. 1990 The stability of the θ-methods in the numerical solution of delay differential equations. IMA J. Numer. Anal. 10, 31-48.
    • (1990) IMA J. Numer. Anal. , vol.10 , pp. 31-48
    • Liu, M.Z.1    Spijker, M.N.2
  • 6
    • 0031210214 scopus 로고    scopus 로고
    • Numerical stability, resolvent conditions and delay differential equations
    • SPIJKER, M. N. 1997 Numerical stability, resolvent conditions and delay differential equations. Appl. Numer. Math. 24, 233-246.
    • (1997) Appl. Numer. Math. , vol.24 , pp. 233-246
    • Spijker, M.N.1
  • 7
    • 21344462327 scopus 로고    scopus 로고
    • Stability estimates for families of matrices of nonuniformly bounded order
    • SPIJKER, M. N. & STRAETEMANS, F. A. J. 1996 Stability estimates for families of matrices of nonuniformly bounded order. Lin. Alg. Appl. 239, 77-102.
    • (1996) Lin. Alg. Appl. , vol.239 , pp. 77-102
    • Spijker, M.N.1    Straetemans, F.A.J.2
  • 8
    • 0007060136 scopus 로고    scopus 로고
    • Using resolvent conditions to obtain new stability results for θ-methods for delay differential equations
    • Mathematical Institute, Leiden University
    • VAN DEN HEUVEL, E. G. 1998 Using resolvent conditions to obtain new stability results for θ-methods for delay differential equations. Report TW-98-01. Mathematical Institute, Leiden University.
    • (1998) Report TW-98-01
    • Van Den Heuvel, E.G.1
  • 9
    • 84972047930 scopus 로고
    • Linear stability analysis in the numerical solution of initial value problems
    • VAN DORSSELAER, J. L. M., KRAAIJEVANGER, J. F. B. M., & SPIJKER, M. N. 1993 Linear stability analysis in the numerical solution of initial value problems. Acta Numerica 1993, 199-237.
    • (1993) Acta Numerica , vol.1993 , pp. 199-237
    • Van Dorsselaer, J.L.M.1    Kraaijevanger, J.F.B.M.2    Spijker, M.N.3
  • 10
    • 0022016198 scopus 로고
    • The stability of difference formulas for delay differential equations
    • WATANABE, D. S. & ROTH, M. G. 1985 The stability of difference formulas for delay differential equations. SIAM J. Numer. Anal. 22, 132-145.
    • (1985) SIAM J. Numer. Anal. , vol.22 , pp. 132-145
    • Watanabe, D.S.1    Roth, M.G.2
  • 11
    • 0000750163 scopus 로고
    • P-stability properties of Runge-Kutta methods for delay differential equations
    • ZENNARO, M. 1986 P-stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 49, 305-318.
    • (1986) Numer. Math. , vol.49 , pp. 305-318
    • Zennaro, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.