-
1
-
-
0030445236
-
Orbit equivalence, flow equivalence and ordered cohomology
-
1. M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210.
-
(1996)
Israel J. Math.
, vol.95
, pp. 169-210
-
-
Boyle, M.1
Handelman, D.2
-
2
-
-
0007117897
-
Funny rank-one weak mixing for nonsingular Abelian actions
-
2. A. I. Danilenko, Funny rank-one weak mixing for nonsingular Abelian actions, to appear in Isreal J. Math.
-
Isreal J. Math.
-
-
Danilenko, A.I.1
-
3
-
-
84941835348
-
Topological orbit equivalence and C*-crossed products
-
3. T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111.
-
(1995)
J. Reine Angew. Math.
, vol.469
, pp. 51-111
-
-
Giordano, T.1
Putnam, I.F.2
Skau, C.F.3
-
5
-
-
0002885105
-
Weak orbit equivalence of cantor minimal systems
-
5. E. Glasner and B. Weiss, Weak orbit equivalence of Cantor minimal systems, Int. J. Math. 6 (1995), 559-579.
-
(1995)
Int. J. Math.
, vol.6
, pp. 559-579
-
-
Glasner, E.1
Weiss, B.2
-
6
-
-
0000294971
-
Ordered Bratteli diagrams, dimensional groups and topological dynamics
-
6. R. H. Herman, I. F. Putman and C. F. Skau, Ordered Bratteli diagrams, dimensional groups and topological dynamics, Int. J. Math. 3 (1992), 827-864.
-
(1992)
Int. J. Math.
, vol.3
, pp. 827-864
-
-
Herman, R.H.1
Putman, I.F.2
Skau, C.F.3
-
7
-
-
0003962321
-
-
Springer-Verlag, Berlin, Göttingen, Heidelberg
-
7. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
-
(1963)
Abstract Harmonic Analysis
, vol.1
-
-
Hewitt, E.1
Ross, K.A.2
-
8
-
-
84972572879
-
The C*-algebras associated with minimal homeomorphisms of the Cantor set
-
8. I. F. Putnam, The C*-algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math. 136 (1989), 329-353.
-
(1989)
Pacific J. Math.
, vol.136
, pp. 329-353
-
-
Putnam, I.F.1
-
9
-
-
34250114353
-
A theorem on periodical Markov approximation in ergodic theory
-
9. A. M. Vershik, A theorem on periodical Markov approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-673.
-
(1985)
J. Soviet Math.
, vol.28
, pp. 667-673
-
-
Vershik, A.M.1
|