메뉴 건너뛰기




Volumn 46, Issue 6, 2001, Pages 807-816

Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow

Author keywords

Asymptotic behavior; Evolutionary Ginzburg Landau equations; Harmonic map heat flow; Vortices

Indexed keywords

ASYMPTOTIC STABILITY; BOUNDARY VALUE PROBLEMS; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; HARMONIC ANALYSIS; HEAT TRANSFER; OPTIMIZATION; PARTIAL DIFFERENTIAL EQUATIONS; SUPERCONDUCTIVITY; THEOREM PROVING;

EID: 0035501575     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(00)00148-6     Document Type: Article
Times cited : (6)

References (12)
  • 5
    • 0002521307 scopus 로고
    • Existence and partial regularity results for the heat flow of harmonic maps
    • (1989) Math. Z. , vol.201 , pp. 83-103
    • Chen, Y.1    Struwe, M.2
  • 8
    • 0002992397 scopus 로고
    • Uniqueness for the harmonic map flow in two dimensions
    • (1995) Calc. Var. , vol.3 , pp. 95-105
    • Freire, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.