-
1
-
-
17544402577
-
Asymmetric exclusion process with next-nearest-neighbor interaction: Some comments on traffic flow and a nonequilibrium reentrance transition
-
[AS] T. Antal and G. Schuetz, Asymmetric exclusion process with next-nearest-neighbor interaction: Some comments on traffic flow and a nonequilibrium reentrance transition, Phys. Rev. E 62:83-93 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 83-93
-
-
Antal, T.1
Schuetz, G.2
-
3
-
-
4243583656
-
Self-organization and a dynamical transition in traffic-now models
-
[BML] O. Biham, A. Middleton, and D. Levine, Self-organization and a dynamical transition in traffic-now models, Phys. Rev. A, 6124-6127 (1992).
-
(1992)
Phys. Rev. A
, pp. 6124-6127
-
-
Biham, O.1
Middleton, A.2
Levine, D.3
-
7
-
-
0031285155
-
Coexistence results for some competition models
-
[DN] R. Durrett and C. Neuhauser, Coexistence results for some competition models, Ann. Appl. Probab. 7(1):10-45 (1997).
-
(1997)
Ann. Appl. Probab.
, vol.7
, Issue.1
, pp. 10-45
-
-
Durrett, R.1
Neuhauser, C.2
-
9
-
-
0000576643
-
Clustering in the one-dimensional three-color cyclic cellular automaton
-
[Fi] R. Fisch, Clustering in the one-dimensional three-color cyclic cellular automaton, Ann. Probab. 20(3): 1528-1548 (1992).
-
(1992)
Ann. Probab.
, vol.20
, Issue.3
, pp. 1528-1548
-
-
Fisch, R.1
-
10
-
-
0032620970
-
Analytic approach to the critical density in cellular automata for traffic flow
-
[GK] M. Gerwinski and J. Krug, Analytic approach to the critical density in cellular automata for traffic flow, Phys. Rev. E 60:188-196 (1999).
-
(1999)
Phys. Rev. E
, vol.60
, pp. 188-196
-
-
Gerwinski, M.1
Krug, J.2
-
12
-
-
0021372413
-
Stationary nonequilibrium states for stochastic lattice gas models of ionic superconductors
-
[KLS] S. Katz, J. Lebowitz, and H. Spohn, Stationary nonequilibrium states for stochastic lattice gas models of ionic superconductors, J. Statist. Phys. 34: 497-537 (1984).
-
(1984)
J. Statist. Phys.
, vol.34
, pp. 497-537
-
-
Katz, S.1
Lebowitz, J.2
Spohn, H.3
-
15
-
-
0001592733
-
Universality classes for deterministic surface growth
-
[KS] J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A 43:4271-4283 (1988).
-
(1988)
Phys. Rev. A
, vol.43
, pp. 4271-4283
-
-
Krug, J.1
Spohn, H.2
-
16
-
-
0003671760
-
Numerical methods for conservation laws
-
ETH Zurich Birkhauser, Basel
-
[LeV] R. LeVecque, Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zurich (Birkhauser, Basel, 1990).
-
(1990)
Lectures in Mathematics
-
-
LeVecque, R.1
-
18
-
-
0033150927
-
Local frequency dependence and global coexistence
-
[MDDGL] J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, and S. Levin, Local frequency dependence and global coexistence, Theoretical Population Biology 55:270-282 (1999).
-
(1999)
Theoretical Population Biology
, vol.55
, pp. 270-282
-
-
Molofsky, J.1
Durrett, R.2
Dushoff, J.3
Griffeath, D.4
Levin, S.5
-
19
-
-
5344265345
-
Particle hopping models and traffic flow theory
-
[Nag1] K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E 53:4655-4672 (1996).
-
(1996)
Phys. Rev. E
, vol.53
, pp. 4655-4672
-
-
Nagel, K.1
-
20
-
-
0342763133
-
Experiences with iterated traffic microsimulations in Dallas
-
Wolf and Schreckenberg, eds. In press
-
[Nag2] K. Nagel, Experiences with iterated traffic microsimulations in Dallas, in Traffic and Granular Flow II, Wolf and Schreckenberg, eds. In press.
-
Traffic and Granular Flow II
-
-
Nagel, K.1
-
21
-
-
0000194086
-
Two-lane traffic rules for cellular automata: A systematic approach
-
[NWWS] K. Nagel, D. Wolf, P. Wagner, and P. Simon, Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E 58:1425-1437 (1995).
-
(1995)
Phys. Rev. E
, vol.58
, pp. 1425-1437
-
-
Nagel, K.1
Wolf, D.2
Wagner, P.3
Simon, P.4
-
22
-
-
28244476619
-
Emergent traffic jams
-
[NP] K. Nagel and M. Paczuski, Emergent traffic jams, Phys. Rev. E 51:2909-2918 (1995).
-
(1995)
Phys. Rev. E
, vol.51
, pp. 2909-2918
-
-
Nagel, K.1
Paczuski, M.2
-
23
-
-
0001232636
-
A cellular automaton model for freeway traffic
-
[NS] K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Physique I France 2:2221 (1992).
-
(1992)
J. Physique I France
, vol.2
, pp. 2221
-
-
Nagel, K.1
Schreckenberg, M.2
-
24
-
-
0033517315
-
Why cars in the next lane seem to go faster
-
September 2
-
[RT] D. Redelmeier and R. Tibshirani, Why cars in the next lane seem to go faster, Nature (September 2, 1999).
-
(1999)
Nature
-
-
Redelmeier, D.1
Tibshirani, R.2
-
26
-
-
33645840905
-
Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium
-
[Ros] H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58:41-53 (1981).
-
(1981)
Z. Wahrsch. Verw. Gebiete
, vol.58
, pp. 41-53
-
-
Rost, H.1
-
27
-
-
0033746620
-
Spatial particle condensation for an exclusion process on a ring
-
[RSS] N. Rajewsky, T. Sasamoto, and E. R. Speer, Spatial particle condensation for an exclusion process on a ring, Physica A 279:123-142 (2000).
-
(2000)
Physica A
, vol.279
, pp. 123-142
-
-
Rajewsky, N.1
Sasamoto, T.2
Speer, E.R.3
-
28
-
-
35949007716
-
Discrete stochastic models for traffic flow
-
[SSNI] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E 51:2939-2949 (1995).
-
(1995)
Phys. Rev. E
, vol.51
, pp. 2939-2949
-
-
Schreckenberg, M.1
Schadschneider, A.2
Nagel, K.3
Ito, N.4
-
29
-
-
0033243145
-
Existence of hydrodynamics for the totally asymmetric simple K-exclusion process
-
[Sep] T. Seppäläinen, Existence of hydrodynamics for the totally asymmetric simple K-exclusion process, Ann. Probab. 27:361-415 (1999).
-
(1999)
Ann. Probab.
, vol.27
, pp. 361-415
-
-
Seppäläinen, T.1
-
34
-
-
84972580384
-
Stationary measures for an exclusion process on one-dimensional lattices with infinitely many hopping sites
-
[Yag] H. Yaguchi, Stationary measures for an exclusion process on one-dimensional lattices with infinitely many hopping sites, Hiroshima Math. J. 16:449-475 (1986).
-
(1986)
Hiroshima Math. J.
, vol.16
, pp. 449-475
-
-
Yaguchi, H.1
|