-
1
-
-
0000035855
-
Conservation laws and integrability conditions for gravitational and Yang - Mills field equations
-
M. Dubois-Violette, J. Madore, Conservation laws and integrability conditions for gravitational and Yang - Mills field equations, Comm. Math. Phys. 108 (1987) 213-223.
-
(1987)
Comm. Math. Phys.
, vol.108
, pp. 213-223
-
-
Dubois-Violette, M.1
Madore, J.2
-
2
-
-
0141814148
-
A geometric definition of Lie derivative for spinor fields
-
J. Janyška, I. Kolář, J. Slovák (Eds.), Brno, 1995, Masaryk University, Brno
-
L. Fatibene, M. Ferraris, M. Francaviglia, M. Godina, A geometric definition of Lie derivative for spinor fields, in: J. Janyška, I. Kolář, J. Slovák (Eds.), Proceedings of the Sixth International Conference on Differential Geometry and its Applications, Brno, 1995, Masaryk University, Brno, 1996, pp. 549-558.
-
(1996)
Proceedings of the Sixth International Conference on Differential Geometry and its Applications
, pp. 549-558
-
-
Fatibene, L.1
Ferraris, M.2
Francaviglia, M.3
Godina, M.4
-
3
-
-
0032325847
-
Gauge formalism for general relativity and fermionic matter
-
L. Fatibene, M. Ferraris, M. Francaviglia, M. Godina, Gauge formalism for general relativity and fermionic matter, Gen. Rel. Grav. 30 (9) (1998) 1371-1389.
-
(1998)
Gen. Rel. Grav.
, vol.30
, Issue.9
, pp. 1371-1389
-
-
Fatibene, L.1
Ferraris, M.2
Francaviglia, M.3
Godina, M.4
-
4
-
-
0001325223
-
Covariant first-order Lagrangians, energy-density and superpotentials in general relativity
-
M. Ferraris, M. Francaviglia, Covariant first-order Lagrangians, energy-density and superpotentials in general relativity, Gen. Rel. Grav. 22 (9) (1990) 965-985.
-
(1990)
Gen. Rel. Grav.
, vol.22
, Issue.9
, pp. 965-985
-
-
Ferraris, M.1
Francaviglia, M.2
-
5
-
-
0001249160
-
Conserved quantities of the gravitational field in tetrad notation
-
M. Ferraris, M. Francaviglia, M. Mottini, Conserved quantities of the gravitational field in tetrad notation, Rend. Mat. (7) 14 (1994) 457-481.
-
(1994)
Rend. Mat.
, vol.14
, Issue.7
, pp. 457-481
-
-
Ferraris, M.1
Francaviglia, M.2
Mottini, M.3
-
6
-
-
0034347139
-
Dual Lagrangian field theories
-
M. Ferraris, M. Francaviglia, M. Raiteri, Dual Lagrangian field theories, J. Math. Phys. 41 (4) (2000) 1889-1915.
-
(2000)
J. Math. Phys.
, vol.41
, Issue.4
, pp. 1889-1915
-
-
Ferraris, M.1
Francaviglia, M.2
Raiteri, M.3
-
7
-
-
0007219532
-
Energy and superpotentials in gravitational field theories
-
M. Modugno (Ed.), Pitagora Editrice, Bologna
-
M. Ferraris, M. Francaviglia, O. Robutti, Energy and superpotentials in gravitational field theories, in: M. Modugno (Ed.), Atti del 6° Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Pitagora Editrice, Bologna, 1986, pp. 137-150.
-
(1986)
Atti del 6° Convegno Nazionale di Relatività Generale e Fisica della Gravitazione
, pp. 137-150
-
-
Ferraris, M.1
Francaviglia, M.2
Robutti, O.3
-
8
-
-
0003759009
-
-
World Scientific, Singapore
-
G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997.
-
(1997)
New Lagrangian and Hamiltonian Methods in Field Theory
-
-
Giachetta, G.1
Mangiarotti, L.2
Sardanashvily, G.3
-
9
-
-
0033636203
-
Two-spinor formulation of first order gravity coupled to Dirac fields
-
M. Godina, P. Matteucci, L. Fatibene, M. Francaviglia, Two-spinor formulation of first order gravity coupled to Dirac fields, Gen. Rel. Grav. 32 (1) (2000) 145-159.
-
(2000)
Gen. Rel. Grav.
, vol.32
, Issue.1
, pp. 145-159
-
-
Godina, M.1
Matteucci, P.2
Fatibene, L.3
Francaviglia, M.4
-
10
-
-
0003912908
-
Momentum maps and classical relativistic fields
-
Part I. E-print: physics@xxx.lanl.gov (physics/9801019)
-
M.J. Gotay, J. Isenberg, J.E. Marsden, Momentum maps and classical relativistic fields. Part I. Covariant Field Theory, 1998. E-print: physics@xxx.lanl.gov (physics/9801019).
-
(1998)
Covariant Field Theory
-
-
Gotay, M.J.1
Isenberg, J.2
Marsden, J.E.3
-
11
-
-
0001837631
-
A finite-dimensional canonical formalism in the classical field theory
-
J. Kijowski, A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973) 99-128.
-
(1973)
Comm. Math. Phys.
, vol.30
, pp. 99-128
-
-
Kijowski, J.1
-
12
-
-
0001401321
-
On a new variational principle in general relativity and the energy of the gravitational field
-
J. Kijowski, On a new variational principle in general relativity and the energy of the gravitational field, Gen. Rel. Grav. 9 (10) (1978) 857-877.
-
(1978)
Gen. Rel. Grav.
, vol.9
, Issue.10
, pp. 857-877
-
-
Kijowski, J.1
-
13
-
-
0007153640
-
Multisymplectic manifolds and the geometrical construction of the poisson brackets in the classical field theory
-
J.-M. Souriau (Ed.), (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974), C.N.R.S, Paris
-
J. Kijowski, W. Szczyrba, Multisymplectic manifolds and the geometrical construction of the poisson brackets in the classical field theory, in: J.-M. Souriau (Ed.), Géométrie Symplectique et Physique Mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974), C.N.R.S, Paris, 1975, pp. 347-379.
-
(1975)
Géométrie Symplectique et Physique Mathématique
, pp. 347-379
-
-
Kijowski, J.1
Szczyrba, W.2
-
14
-
-
0000247184
-
A canonical structure for classical field theories
-
J. Kijowski, W. Szczyrba, A canonical structure for classical field theories, Comm. Math. Phys. 46 (1976) 183-206.
-
(1976)
Comm. Math. Phys.
, vol.46
, pp. 183-206
-
-
Kijowski, J.1
Szczyrba, W.2
-
15
-
-
0003347176
-
A symplectic framework for field theories
-
Springer, Berlin
-
J. Kijowski, W.M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Physics, Vol. 107, Springer, Berlin, 1979.
-
(1979)
Lecture Notes in Physics
, vol.107
-
-
Kijowski, J.1
Tulczyjew, W.M.2
-
16
-
-
0003827769
-
-
Springer, Berlin
-
I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
-
(1993)
Natural Operations in Differential Geometry
-
-
Kolář, I.1
Michor, P.W.2
Slovák, J.3
-
17
-
-
36149004353
-
Covariant conservation laws in general relativity
-
A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 (1959) 934-936.
-
(1959)
Phys. Rev.
, vol.113
, pp. 934-936
-
-
Komar, A.1
-
18
-
-
0000650888
-
Lagrange theory in fibered manifolds
-
D. Krupka, Lagrange theory in fibered manifolds, Rep. Math. Phys. 2 (1971) 121-133.
-
(1971)
Rep. Math. Phys.
, vol.2
, pp. 121-133
-
-
Krupka, D.1
-
19
-
-
0010193137
-
The sparling 3-form, Ashtekar variables and quasi-local mass
-
T.N. Bailey, R.J. Baston (Eds.), London Mathematical Society, Cambridge University Press, Cambridge
-
L.J. Mason, J. Frauendiener, The sparling 3-form, Ashtekar variables and quasi-local mass, in: T.N. Bailey, R.J. Baston (Eds.), Twistors in Mathematics and Physics, Lecture Notes, Vol. 156, London Mathematical Society, Cambridge University Press, Cambridge, 1990, pp. 189-217.
-
(1990)
Twistors in Mathematics and Physics, Lecture Notes
, vol.156
, pp. 189-217
-
-
Mason, L.J.1
Frauendiener, J.2
-
20
-
-
0000480951
-
A new gravitational energy expression with a simple positivity proof
-
J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. 83A (1981) 241-242.
-
(1981)
Phys. Lett.
, vol.83 A
, pp. 241-242
-
-
Nester, J.M.1
-
21
-
-
0002316751
-
Quasi-local mass and angular momentum in general relativity
-
R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. Roy. Soc. London Ser. A 381 (1982) 53-62.
-
(1982)
Proc. Roy. Soc. London Ser. A
, vol.381
, pp. 53-62
-
-
Penrose, R.1
-
22
-
-
0007210194
-
Spinors and Space - Time
-
Cambridge University Press, Cambridge
-
R. Penrose, W. Rindler, Spinors and Space - Time, Vol. 1: Two-spinor Calculus and Relativistic Fields, Cambridge University Press, Cambridge, 1984.
-
(1984)
Vol. 1: Two-spinor Calculus and Relativistic Fields
, vol.1
-
-
Penrose, R.1
Rindler, W.2
-
23
-
-
0003371714
-
Spinors and Space - Time
-
Cambridge University Press, Cambridge
-
R. Penrose, W. Rindler, Spinors and Space - Time, Vol. 2: Spinor and Twistor Methods in Space - Time Geometry, Cambridge University Press, Cambridge, 1986.
-
(1986)
Vol. 2: Spinor and Twistor Methods in Space - Time Geometry
, vol.2
-
-
Penrose, R.1
Rindler, W.2
-
24
-
-
0007222799
-
General relativity as a gauge theory of orthogonal groups in three dimensions
-
P. Pronin, G. Sardanashvily (Eds.), World Scientific, Singapore
-
M. Raiteri, M. Ferraris, M. Francaviglia, General relativity as a gauge theory of orthogonal groups in three dimensions, in: P. Pronin, G. Sardanashvily (Eds.), Gravity, Particles and Space - Time, World Scientific, Singapore, 1996, pp. 81-98.
-
(1996)
Gravity, Particles and Space - Time
, pp. 81-98
-
-
Raiteri, M.1
Ferraris, M.2
Francaviglia, M.3
-
25
-
-
0000800106
-
Noether equations and conservation laws
-
A. Trautman, Noether equations and conservation laws, Comm. Math. Phys. 6 (1967) 248-261.
-
(1967)
Comm. Math. Phys.
, vol.6
, pp. 248-261
-
-
Trautman, A.1
-
26
-
-
0004057466
-
-
The University of Chicago Press, Chicago
-
R.M. Wald, General Relativity, The University of Chicago Press, Chicago, 1984.
-
(1984)
General Relativity
-
-
Wald, R.M.1
|