메뉴 건너뛰기




Volumn 50, Issue 3, 2001, Pages 265-280

Estimating reliability measures for highly-dependable Markov systems, using balanced likelihood ratios

Author keywords

Highly dependable system; Importance sampling; Limiting unavailability; Mean time to failure; Monte Carlo simulation

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ESTIMATION; FAULT TOLERANT COMPUTER SYSTEMS; MARKOV PROCESSES; MONTE CARLO METHODS; SAMPLING; THEOREM PROVING;

EID: 0035466285     PISSN: 00189529     EISSN: None     Source Type: Journal    
DOI: 10.1109/24.974123     Document Type: Article
Times cited : (24)

References (23)
  • 2
    • 0008050147 scopus 로고    scopus 로고
    • Semi-Markov and semi-stationary methods for estimating reliability measures of highly-dependable systems
    • School of Industrial & Systems Eng'g, Georgia Inst. Technology, Technical Report
    • (1999)
    • Alexopoulos, C.1    Shultes, B.C.2
  • 12
    • 0003728974 scopus 로고
    • Efficient rare event simulation of stochastic systems
    • Ph.D. dissertation, Dep't Operations Research, Stanford Univ.
    • (1993)
    • Juneja, S.1
  • 13
    • 0008099172 scopus 로고    scopus 로고
    • A splitting based importance-sampling algorithm for the fast simulation of Markov chains with small transition probabilities
    • Indian Inst. Technology, Delhi, Research Report
    • (2000)
    • Juneja, S.1    Shahabuddin, P.2
  • 23
    • 4243563257 scopus 로고    scopus 로고
    • Regenerative techniques for estimating performance measures of highly dependable systems with repairs
    • Ph.D. dissertation, Georgia Inst. Technology, Atlanta
    • (1997)
    • Shultes, B.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.