-
1
-
-
0007301683
-
Relaxation times for queueing systems
-
eds J. W. de Bakker, M. Hazewinkel and J. K. Lenstra. North-Holland, Amsterdam
-
BLANC, J. P. C. AND VAN DOORN, E. A. (1986). Relaxation times for queueing systems. In Mathematics and Computer Sci., eds J. W. de Bakker, M. Hazewinkel and J. K. Lenstra. North-Holland, Amsterdam, pp. 139-162.
-
(1986)
Mathematics and Computer Sci.
, pp. 139-162
-
-
Blanc, J.P.C.1
Van Doorn, E.A.2
-
4
-
-
0002239303
-
On the convergence of moments in stationary Markov chains
-
HOLEWIJN, P. J. AND HORDIJK, A. (1975). On the convergence of moments in stationary Markov chains. Stoch. Proc. Appl. 3, 55-64.
-
(1975)
Stoch. Proc. Appl.
, vol.3
, pp. 55-64
-
-
Holewijn, P.J.1
Hordijk, A.2
-
5
-
-
0000036102
-
The differential equations of birth-and-death processes, and the Stieltjes moment problem
-
KARLIN, S. AND MCGREGOR, J. L. (1957). The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85, 589-646.
-
(1957)
Trans. Amer. Math. Soc.
, vol.85
, pp. 589-646
-
-
Karlin, S.1
McGregor, J.L.2
-
6
-
-
84968465028
-
The classification of birth and death processes
-
KARLIN, S. AND MCGREGOR, J. L. (1957). The classification of birth and death processes. Trans. Amer. Math. Soc. 86, 366-400.
-
(1957)
Trans. Amer. Math. Soc.
, vol.86
, pp. 366-400
-
-
Karlin, S.1
McGregor, J.L.2
-
8
-
-
0007297782
-
Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes
-
KEILSON, J. (1971). Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes. J. Appl. Prob. 8, 391-398.
-
(1971)
J. Appl. Prob.
, vol.8
, pp. 391-398
-
-
Keilson, J.1
-
10
-
-
0033147981
-
On the convergence to stationarity of the many-server poisson queue
-
STADJE, W. AND PARTHASARATHY, P. R. (1999). On the convergence to stationarity of the many-server Poisson queue. J. Appl. Prob. 36, 546-557.
-
(1999)
J. Appl. Prob.
, vol.36
, pp. 546-557
-
-
Stadje, W.1
Parthasarathy, P.R.2
-
11
-
-
0019576911
-
The transient state probabilities for a queueing model where potential customers are discouraged by queue length
-
VAN DOORN, E. A. (1981). The transient state probabilities for a queueing model where potential customers are discouraged by queue length. J. Appl. Prob. 18, 499-506.
-
(1981)
J. Appl. Prob.
, vol.18
, pp. 499-506
-
-
Van Doorn, E.A.1
-
12
-
-
0000783136
-
Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process
-
VAN DOORN, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv. Appl. Prob. 17, 514-530.
-
(1985)
Adv. Appl. Prob.
, vol.17
, pp. 514-530
-
-
Van Doorn, E.A.1
-
13
-
-
0000552628
-
Asymptotic formulas for Markov processes with applications to simulation
-
WHITT, W. (1992). Asymptotic formulas for Markov processes with applications to simulation. Operat. Res. 40, 279-291.
-
(1992)
Operat. Res.
, vol.40
, pp. 279-291
-
-
Whitt, W.1
|