메뉴 건너뛰기




Volumn 23, Issue 7, 2001, Pages 619-630

Generalized bottom-hole pressure with fractality and analyses of three-dimensional anisotropic fractal reservoirs

Author keywords

Anisotropic fractal reservoirs; Fox H function; Fractal diffusion theory; Fractal dimensions; Skin; Wellbore storage

Indexed keywords

ANISOTROPY; COMPUTER SIMULATION; FRACTALS; FUNCTIONS; GREEN'S FUNCTION; PARAMETER ESTIMATION; RESERVOIRS (WATER); SENSITIVITY ANALYSIS;

EID: 0035437209     PISSN: 00908312     EISSN: None     Source Type: Journal    
DOI: 10.1080/00908310152004728     Document Type: Article
Times cited : (5)

References (24)
  • 2
    • 0029413404 scopus 로고
    • Application of fractal geometry to the study of networks of fractures and their pressure transient
    • Acuna, J. A., and Y. C. Yortsos. 1995. Application of fractal geometry to the study of networks of fractures and their pressure transient. Water. Resour. Res. 31:527-540.
    • (1995) Water. Resour. Res. , vol.31 , pp. 527-540
    • Acuna, J.A.1    Yortsos, Y.C.2
  • 3
    • 0014838506 scopus 로고
    • An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment
    • Agarwal, G., R. Al-Hussainy, and H. J. Jr. Ramey. 1970. An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment SPE Journal. 249:279-290.
    • (1970) SPE Journal. , vol.249 , pp. 279-290
    • Agarwal, G.1    Al-Hussainy, R.2    Ramey Jr., H.J.3
  • 4
    • 0028669193 scopus 로고
    • Pressure-transient model for a vertically fractured well in a fractal reservoir
    • Beier, R. A. 1994. Pressure-transient model for a vertically fractured well in a fractal reservoir. SPE Formation Evaluation 2:122-128.
    • (1994) SPE Formation Evaluation , vol.2 , pp. 122-128
    • Beier, R.A.1
  • 5
    • 0025405254 scopus 로고
    • Pressure-transient analysis of fractal reservoirs
    • Chang, J., and Y. C. Yortsos. 1990. Pressure-transient analysis of fractal reservoirs. SPE Formation Evaluation 5:31-38.
    • (1990) SPE Formation Evaluation , vol.5 , pp. 31-38
    • Chang, J.1    Yortsos, Y.C.2
  • 6
    • 0027189507 scopus 로고
    • A note on pressure-transient analysis of fractal reservoirs
    • Chang, J., and Y. C. Yortsos. 1992. A note on pressure-transient analysis of fractal reservoirs. SPE Adv. Tech. Series. 2:170-171.
    • (1992) SPE Adv. Tech. Series. , vol.2 , pp. 170-171
    • Chang, J.1    Yortsos, Y.C.2
  • 8
    • 36149036329 scopus 로고
    • Fractional diffusion equation on fractals: One-dimensional case and asymptotic behavior
    • Giona, M., and H. E. Roman. 1992. Fractional diffusion equation on fractals: One-dimensional case and asymptotic behavior. Journal of Physics A: Math. Gen. 25:2093-2105.
    • (1992) Journal of Physics A: Math. Gen. , vol.25 , pp. 2093-2105
    • Giona, M.1    Roman, H.E.2
  • 12
    • 43949160695 scopus 로고
    • Fractional model equation for anomalous diffusion
    • Metzler, R., W. G. Glockle, and T. F. Nonnenmacher. 1994. Fractional model equation for anomalous diffusion. Physica A 211:13-24.
    • (1994) Physica A , vol.211 , pp. 13-24
    • Metzler, R.1    Glockle, W.G.2    Nonnenmacher, T.F.3
  • 13
    • 0031581766 scopus 로고    scopus 로고
    • Fractional diffusion: Exact representation of spectral functions
    • Metzler, R., and T. F. Nonnenmacher. 1997. Fractional diffusion: Exact representation of spectral functions. Journal of Physics A: Math. Gen. 30:1089-1093.
    • (1997) Journal of Physics A: Math. Gen. , vol.30 , pp. 1089-1093
    • Metzler, R.1    Nonnenmacher, T.F.2
  • 14
    • 0000237249 scopus 로고    scopus 로고
    • Fractional diffusion, waiting-time distributions, and Cattaneo-type equations
    • Metzler, R., and T. F. Nonnenmacher. 1998. Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Physical Review E 57:6409-6414.
    • (1998) Physical Review E , vol.57 , pp. 6409-6414
    • Metzler, R.1    Nonnenmacher, T.F.2
  • 17
    • 0032137902 scopus 로고    scopus 로고
    • An analytic approach for pressure transients of fractally fractured reservoirs with variable apertures
    • Park, H. W., I. S. Jang, and J. M. Kang. 1998. An analytic approach for pressure transients of fractally fractured reservoirs with variable apertures. In Situ 22:321-337.
    • (1998) In Situ , vol.22 , pp. 321-337
    • Park, H.W.1    Jang, I.S.2    Kang, J.M.3
  • 18
    • 0034548688 scopus 로고    scopus 로고
    • Pressure behavior of transport in fractal porous media using a fractional calculus approach
    • Park, H. W., J. Choe, and J. M. Kang. 2000. Pressure behavior of transport in fractal porous media using a fractional calculus approach. Energy Sources, 22:881-890.
    • (2000) Energy Sources , vol.22 , pp. 881-890
    • Park, H.W.1    Choe, J.2    Kang, J.M.3
  • 21
    • 0010822018 scopus 로고
    • Fractional diffusion equation on fractals: Three-dimensional case and scattering function
    • Roman, H. E., and M. Giona. 1992. Fractional diffusion equation on fractals: Three-dimensional case and scattering function. Journal of Physics A: Math. Gen. 30:3463-3470.
    • (1992) Journal of Physics A: Math. Gen. , vol.30 , pp. 3463-3470
    • Roman, H.E.1    Giona, M.2
  • 22
    • 0003943917 scopus 로고
    • Houston: Gulp Publishing Company
    • Sabet, M. A. 1991. Well test analysis. Houston: Gulp Publishing Company.
    • (1991) Well Test Analysis
    • Sabet, M.A.1
  • 24
    • 0010888887 scopus 로고    scopus 로고
    • Multiscaling transport equation on fractals
    • Zeng, Q., and H. Li. 1999. Multiscaling transport equation on fractals. Fractals 2:105-111.
    • (1999) Fractals , vol.2 , pp. 105-111
    • Zeng, Q.1    Li, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.