-
2
-
-
0002794211
-
1 maps having no σ-finite invariant measure equivalent to Lebesgue
-
1 maps having no σ-finite invariant measure equivalent to Lebesgue. Israel J. Math. 108, 83-107 (1998)
-
(1998)
Israel J. Math.
, vol.108
, pp. 83-107
-
-
Bruin, H.1
Hawkins, J.2
-
4
-
-
84974325811
-
1 par morceaux de l'intervalle, sans probabilité absolument continue invariante
-
1 par morceaux de l'intervalle, sans probabilité absolument continue invariante. Ergodic theory dynamical systems 9, 101-113 (1989)
-
(1989)
Ergodic Theory Dynamical Systems
, vol.9
, pp. 101-113
-
-
Góra, P.1
Schmitt, B.2
-
5
-
-
0001290650
-
Properties of invariant measures for piecewise expanding one-dimensional transformations with summable oscillations of derivative
-
5. Góra, P.: Properties of invariant measures for piecewise expanding one-dimensional transformations with summable oscillations of derivative. Ergodic Theory Dynam. Systems 14 no. 3, 475-492 (1994)
-
(1994)
Ergodic Theory Dynam. Systems
, vol.14
, Issue.3
, pp. 475-492
-
-
Góra, P.1
-
6
-
-
84968466162
-
Noninvertible transformations admitting no absolutely continuous σ-finite invariant measure
-
6. Hawkins, J. and Silva, C.: Noninvertible transformations admitting no absolutely continuous σ-finite invariant measure. Proc. Amer. Math. Soc. 111 no. 2, 455-463 (1991)
-
(1991)
Proc. Amer. Math. Soc.
, vol.111
, Issue.2
, pp. 455-463
-
-
Hawkins, J.1
Silva, C.2
-
7
-
-
0003195540
-
Introduction to the modern theory of dynamical systems
-
Cambridge: Cambridge U. Press
-
7. Katok, A. and Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Ency. of Math, and its App., Vol. 54, Cambridge: Cambridge U. Press, 1995
-
(1995)
Ency. of Math, and Its App.
, vol.54
-
-
Katok, A.1
Hasselblatt, B.2
-
10
-
-
0007123514
-
A remark on expanding mappings
-
10. Krzyzewski, K.: A remark on expanding mappings. Colloq. Math. 41, no. 2, 291-295 (1979)
-
(1979)
Colloq. Math.
, vol.41
, Issue.2
, pp. 291-295
-
-
Krzyzewski, K.1
-
11
-
-
0002305647
-
On invariant measures for expanding differentiable mappings
-
11. Krzyzewski, K. and Szlenk, W.: On invariant measures for expanding differentiable mappings. Studia Math. 33, 83-92 (1969)
-
(1969)
Studia Math.
, vol.33
, pp. 83-92
-
-
Krzyzewski, K.1
Szlenk, W.2
-
13
-
-
0030471937
-
1 expanding map of the circle which is not weak-mixing
-
1 expanding map of the circle which is not weak-mixing. Israel J. Math. 93, 359-372 (1996)
-
(1996)
Israel J. Math.
, vol.93
, pp. 359-372
-
-
Quas, A.1
-
14
-
-
0002291314
-
1 maps
-
1 maps. Studia Math. 120, 83-88 (1996)
-
(1996)
Studia Math.
, vol.120
, pp. 83-88
-
-
Quas, A.1
-
16
-
-
0007033618
-
Most expanding maps have no absolutely continuous invariant measure
-
16. Quas, A.: Most expanding maps have no absolutely continuous invariant measure. Studia Math. 134, 69-78 (1999)
-
(1999)
Studia Math.
, vol.134
, pp. 69-78
-
-
Quas, A.1
-
17
-
-
0007035929
-
On certain representations of real numbers and on sequences of equivalent events
-
17. Rényi, A.: On certain representations of real numbers and on sequences of equivalent events. Acta Sci. Math. (Szeged) 26, 63-74 (1965)
-
(1965)
Acta Sci. Math. (Szeged)
, vol.26
, pp. 63-74
-
-
Rényi, A.1
-
18
-
-
0000522467
-
A variational formalism of equilibrium statistical mechanics and the Gibbs phase rule
-
18. Ruelle, D.: A variational formalism of equilibrium statistical mechanics and the Gibbs phase rule. Commun. Math. Phys. 5, 324-329 (1967)
-
(1967)
Commun. Math. Phys.
, vol.5
, pp. 324-329
-
-
Ruelle, D.1
-
19
-
-
51249178513
-
On μ-recurrent nonsingular endomorphisms
-
19. Silva, C.: On μ-recurrent nonsingular endomorphisms. Israel J. Math. 61 no. 1, 1-13 (1988)
-
(1988)
Israel J. Math.
, vol.61
, Issue.1
, pp. 1-13
-
-
Silva, C.1
-
21
-
-
84968476187
-
Invariant measures and equilibrium states for some mappings which expand distances
-
21. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Am. Math. Soc. 236, 121-153 (1978)
-
(1978)
Trans. Am. Math. Soc.
, vol.236
, pp. 121-153
-
-
Walters, P.1
|