메뉴 건너뛰기




Volumn 38, Issue 5, 2001, Pages 621-639

Application of artificial neural networks to fracture analysis at the Äspö HRL, Sweden: Fracture sets classification

Author keywords

Artificial neural networks; sp HRL; Data analysis; Fractures

Indexed keywords

BACKPROPAGATION; FRACTURE; LEARNING ALGORITHMS; ROCK MECHANICS; TRANSFER FUNCTIONS; VECTOR QUANTIZATION; VECTORS;

EID: 0035386660     PISSN: 13651609     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1365-1609(01)00030-2     Document Type: Article
Times cited : (40)

References (30)
  • 3
    • 0025680388 scopus 로고
    • An experiment in the use of trained neural networks for regional seismic event classification
    • (1990) Geophys Res Lett , vol.17 , Issue.7 , pp. 977-980
    • Pulli, J.1    Dysart, P.2
  • 4
    • 0025995053 scopus 로고
    • A pattern recognition approach to geophysical inversion using neural nets
    • (1991) Geophys J Int , vol.105 , pp. 629-648
    • Raiche, A.1
  • 11
    • 0026923686 scopus 로고
    • Neural networks provide more accurate reservoir permeability
    • (1992) Oil Gas J , vol.90 , pp. 80-83
    • Osborne, D.A.1
  • 18
    • 84992660744 scopus 로고    scopus 로고
    • Hammarström M, Olsson O, editors. Äspö Hard Rock Laboratory, 10 years of research. Swedish Nuclear Fuel and Waste Management Company (SKB). AB Primo, Oskarshamn
    • (1996) Geological Investigation , pp. 87
    • Stanfors, R.1
  • 30
    • 0000793695 scopus 로고
    • Neural networks offer an alternative to traditional regression
    • (1991) Geobyte , vol.7 , pp. 14-19
    • Robinson, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.