메뉴 건너뛰기




Volumn 2, Issue 6, 2001, Pages 422-432

Protein modules that manipulate histone tails for chromatin regulation

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE; NUCLEAR PROTEIN;

EID: 0035377556     PISSN: 14710072     EISSN: None     Source Type: Journal    
DOI: 10.1038/35073047     Document Type: Review
Times cited : (182)

References (117)
  • 2
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786-794 (1964).
    • (1964) Proc. Natl Acad. Sci. USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 3
    • 0026441880 scopus 로고
    • Reversible histone modifications and the chromosome cell cycle
    • Bradbury, E. M. Reversible histone modifications and the chromosome cell cycle. BioEssays 14, 9-16 (1992).
    • (1992) BioEssays , vol.14 , pp. 9-16
    • Bradbury, E.M.1
  • 4
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349-352 (1997).
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 5
    • 0028234142 scopus 로고
    • Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast
    • Thompson, J. S., Ling, X. & Grunstein, M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369, 245-247 (1994).
    • (1994) Nature , vol.369 , pp. 245-247
    • Thompson, J.S.1    Ling, X.2    Grunstein, M.3
  • 6
    • 0025736044 scopus 로고
    • Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
    • Durrin, L., Mann, R., Kayne, P. & Grunstein, M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65, 1023-1031 (1991).
    • (1991) Cell , vol.65 , pp. 1023-1031
    • Durrin, L.1    Mann, R.2    Kayne, P.3    Grunstein, M.4
  • 7
    • 0033080794 scopus 로고    scopus 로고
    • Chromatin disruption and modification
    • Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711-720 (1999).
    • (1999) Nucleic Acids Res. , vol.27 , pp. 711-720
    • Wolffe, A.P.1    Hayes, J.J.2
  • 8
    • 0033826515 scopus 로고    scopus 로고
    • Role of histone N-terminal tails and their acetylation in nucleosome dynamics
    • Morales, V. & Richard-Foy, H. Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol. Cell. Biol. 20, 7230-7237 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7230-7237
    • Morales, V.1    Richard-Foy, H.2
  • 9
    • 0032558998 scopus 로고    scopus 로고
    • Structure and function of the core histone N-termini: More than meets the eye
    • Hansen, J. C., Tse, C. & Wolffe, A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637-17641 (1998).
    • (1998) Biochemistry , vol.37 , pp. 17637-17641
    • Hansen, J.C.1    Tse, C.2    Wolffe, A.P.3
  • 10
    • 0034614407 scopus 로고    scopus 로고
    • Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. a relaxation study of tetrasomes on DNA minicircles
    • Sivolob, A., De Lucia, F., Alilat, M. & Prunell, A. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles. J. Mol. Biol. 295, 55-69 (2000).
    • (2000) J. Mol. Biol. , vol.295 , pp. 55-69
    • Sivolob, A.1    De Lucia, F.2    Alilat, M.3    Prunell, A.4
  • 11
    • 0034634558 scopus 로고    scopus 로고
    • Acetylation increases the α-helical content of the histone tails of the nucleosome
    • Wang, X., Moore, S. C., Laszckzak, M. & Ausio, J. Acetylation increases the α-helical content of the histone tails of the nucleosome. J. Biol. Chem. 275, 35013-35020 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 35013-35020
    • Wang, X.1    Moore, S.C.2    Laszckzak, M.3    Ausio, J.4
  • 12
    • 0031741231 scopus 로고    scopus 로고
    • Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding
    • Mutskov, V. et al. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol. Cell. Biol. 18, 6293-6304 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6293-6304
    • Mutskov, V.1
  • 13
    • 0034724562 scopus 로고    scopus 로고
    • Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes
    • Polach, K. J., Lowary, P. T. & Widom, J. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J. Mol. Biol. 298, 211-223 (2000).
    • (2000) J. Mol. Biol. , vol.298 , pp. 211-223
    • Polach, K.J.1    Lowary, P.T.2    Widom, J.3
  • 14
    • 0031963718 scopus 로고    scopus 로고
    • Histone acetylation as an epigenetic determinant of long-term transcriptional competence
    • Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54, 21-31 (1998). The first to suggest that histone tail modifications may be histone marks that signal downstream transcriptional events.
    • (1998) Cell. Mol. Life Sci. , vol.54 , pp. 21-31
    • Turner, B.M.1
  • 15
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41-45 (2000). Builds on the initial proposal of Turner, to propose that distinct histone tail modifications provide a 'histone code' for downstream transcriptional activities.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 16
    • 0026783834 scopus 로고
    • Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription
    • Georgakopoulos, T. & Thireos, G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11, 4145-4152 (1992).
    • (1992) EMBO J. , vol.11 , pp. 4145-4152
    • Georgakopoulos, T.1    Thireos, G.2
  • 17
    • 0027948984 scopus 로고
    • Functional similarity and physical association between GCN5 and ADA2-putative transcriptional adaptors
    • Marcus, G., Silverman, N., Berger, S., Horiuchi, J. & Guarente. L. Functional similarity and physical association between GCN5 and ADA2-putative transcriptional adaptors. EMBO J. 13, 4807-4815 (1994).
    • (1994) EMBO J. , vol.13 , pp. 4807-4815
    • Marcus, G.1    Silverman, N.2    Berger, S.3    Horiuchi, J.4    Guarente, L.5
  • 18
    • 0028876860 scopus 로고
    • ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex
    • Horiuchi, J., Silverman, N., Marcus, G. A. & Guarente, L. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15, 1203-1209 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1203-1209
    • Horiuchi, J.1    Silverman, N.2    Marcus, G.A.3    Guarente, L.4
  • 19
    • 0029932309 scopus 로고    scopus 로고
    • Structural and functional analysis of yeast putative adaptors: Evidence for an adaptor complex in vivo
    • Candau, R. & Berger, S. L. Structural and functional analysis of yeast putative adaptors: evidence for an adaptor complex in vivo. J. Biol. Chem. 271, 5237-5345 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 5237-5345
    • Candau, R.1    Berger, S.L.2
  • 20
    • 0029096813 scopus 로고
    • Characterization of physical interactions of the putative transcriptional adaptor. ADA2, with acidic activation domains and TATA-binding protein
    • Barlev, N. A. et al. Characterization of physical interactions of the putative transcriptional adaptor. ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270, 19337-19344 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 19337-19344
    • Barlev, N.A.1
  • 21
    • 0028104786 scopus 로고
    • Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription
    • Silverman, N., Agapite, J. & Guarente, L. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl Acad. Sci. USA 91, 11665-11668 (1994).
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 11665-11668
    • Silverman, N.1    Agapite, J.2    Guarente, L.3
  • 22
    • 0029837730 scopus 로고    scopus 로고
    • A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains
    • Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458-5465 (1996).
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5458-5465
    • Zamir, I.1
  • 23
    • 0029132202 scopus 로고
    • Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor
    • Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397-404 (1995).
    • (1995) Nature , vol.377 , pp. 397-404
    • Horlein, A.J.1
  • 24
    • 0029154931 scopus 로고
    • Polarity-specific activities of retinoic acid receptors determined by a co-repressor
    • Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451-454 (1995).
    • (1995) Nature , vol.377 , pp. 451-454
    • Kurokawa, R.1
  • 25
    • 17744413444 scopus 로고    scopus 로고
    • A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression
    • Heinzel, T. et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43-48 (1997).
    • (1997) Nature , vol.387 , pp. 43-48
    • Heinzel, T.1
  • 26
    • 0030959244 scopus 로고    scopus 로고
    • Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression
    • Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49-55 (1997).
    • (1997) Nature , vol.387 , pp. 49-55
    • Alland, L.1
  • 27
    • 0013900616 scopus 로고
    • RNA synthesis and histone acetylation during the course of gene activation in lymphocytes
    • Pogo, B. G. T., Allfrey, V. G. & Mirsky, A. E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl Acad. Sci. USA 55, 6212-6222 (1966).
    • (1966) Proc. Natl Acad. Sci. USA , vol.55 , pp. 6212-6222
    • Pogo, B.G.T.1    Allfrey, V.G.2    Mirsky, A.E.3
  • 28
    • 0017867123 scopus 로고
    • Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNAase I sensitivity of the associated DNA sequences
    • Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNAase I sensitivity of the associated DNA sequences. Proc. Natl Acad. Sci. USA 75, 2239-2243 (1978).
    • (1978) Proc. Natl Acad. Sci. USA , vol.75 , pp. 2239-2243
    • Vidali, G.1    Boffa, L.C.2    Bradbury, E.M.3    Allfrey, V.G.4
  • 29
    • 0024003456 scopus 로고
    • A direct link between core histone acetylation and transcriptionally active chromatin
    • Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395-1403 (1988).
    • (1988) EMBO J. , vol.7 , pp. 1395-1403
    • Hebbes, T.R.1    Thorne, A.W.2    Crane-Robinson, C.3
  • 30
    • 0028326787 scopus 로고
    • Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain
    • Hebbes, T. R., Clayton A. L. Throne A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823-1830 (1994).
    • (1994) EMBO J. , vol.13 , pp. 1823-1830
    • Hebbes, T.R.1    Clayton, A.L.2    Throne, A.W.3    Crane-Robinson, C.4
  • 31
    • 0029985730 scopus 로고    scopus 로고
    • Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro
    • Vettese-Dadey, M. et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15, 2508-2518 (1996).
    • (1996) EMBO J , vol.15 , pp. 2508-2518
    • Vettese-Dadey, M.1
  • 32
    • 0017815160 scopus 로고
    • DNA associated with hyperacetylated histone is preferentially digested by DNase I
    • Sealy, L. & Chalkley, R. DNA associated with hyperacetylated histone is preferentially digested by DNase I. Nucleic Acids Res. 5, 1863-1876 (1978).
    • (1978) Nucleic Acids Res. , vol.5 , pp. 1863-1876
    • Sealy, L.1    Chalkley, R.2
  • 33
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog of yeast Gcn5p linking histone acetylation to gene activation
    • Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog of yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843-851 (1996). The first to functionally link gene activation by a transcriptional co-activator to the histone acetyltransferase activity of that co-activator.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1
  • 34
    • 0026645025 scopus 로고
    • Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
    • Berger, S. L. et al. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70, 251-265 (1992).
    • (1992) Cell , vol.70 , pp. 251-265
    • Berger, S.L.1
  • 35
    • 0032031606 scopus 로고    scopus 로고
    • Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo
    • Wang, L., Liu, L. & Berger, S. L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12, 640-653 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 640-653
    • Wang, L.1    Liu, L.2    Berger, S.L.3
  • 36
    • 0032030906 scopus 로고    scopus 로고
    • Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo
    • Kuo, M. H., Zhou, J. X., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627-639 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 627-639
    • Kuo, M.H.1    Zhou, J.X.2    Jambeck, P.3    Churchill, M.E.A.4    Allis, C.D.5
  • 37
    • 0343417089 scopus 로고    scopus 로고
    • The p300/CBP family: Integrating signals with transcription factors and chromatin
    • Shikama, N., Lyon, J. & LaThangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230-236 (1997).
    • (1997) Trends Cell Biol. , vol.7 , pp. 230-236
    • Shikama, N.1    Lyon, J.2    LaThangue, N.B.3
  • 38
    • 0030480969 scopus 로고    scopus 로고
    • The CBP co-activator is a histone acetyltransferase
    • Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641-643 (1996).
    • (1996) Nature , vol.384 , pp. 641-643
    • Bannister, A.J.1    Kouzarides, T.2
  • 39
    • 0030447943 scopus 로고    scopus 로고
    • 1250 subunit of TFIID has histone acetyltransferase activity
    • 1250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261-1270 (1996).
    • (1996) Cell , vol.87 , pp. 1261-1270
    • Mizzen, C.A.1
  • 40
    • 0034045040 scopus 로고    scopus 로고
    • Histone deacetylases, transcriptional control, and cancer
    • Cress, W. D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol. 184, 1-16 (2000).
    • (2000) J. Cell. Physiol. , vol.184 , pp. 1-16
    • Cress, W.D.1    Seto, E.2
  • 41
    • 0032142918 scopus 로고    scopus 로고
    • Roles of histone acetyltransferases and deacetylases in gene regulation
    • Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626 (1998).
    • (1998) Bioessays , vol.20 , pp. 615-626
    • Kuo, M.H.1    Allis, C.D.2
  • 42
    • 0033973262 scopus 로고    scopus 로고
    • A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF
    • Neal, K. C., Pannuti, A., Smith, E. R. & Lucchesi, J. C. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim. Biophys. Acta 1490, 170-174 (2000).
    • (2000) Biochim. Biophys. Acta , vol.1490 , pp. 170-174
    • Neal, K.C.1    Pannuti, A.2    Smith, E.R.3    Lucchesi, J.C.4
  • 43
    • 0034051227 scopus 로고    scopus 로고
    • Acetylation of histones and transcription-related factors
    • Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459 (2000).
    • (2000) Microbiol. Mol. Biol. Rev. , vol.64 , pp. 435-459
    • Sterner, D.E.1    Berger, S.L.2
  • 44
    • 0034636554 scopus 로고    scopus 로고
    • ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation
    • Kawasaki, H. et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195-200 (2000).
    • (2000) Nature , vol.405 , pp. 195-200
    • Kawasaki, H.1
  • 45
    • 0033590107 scopus 로고    scopus 로고
    • Sas3 is a histone acetyltransferase and requires a zinc finger motif
    • Takechi, S. & Nakayama, T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem. Biophys. Res. Commun. 266, 405-410 (1999).
    • (1999) Biochem. Biophys. Res. Commun. , vol.266 , pp. 405-410
    • Takechi, S.1    Nakayama, T.2
  • 46
    • 0030939235 scopus 로고    scopus 로고
    • The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function
    • EhrenhoferMurray, A. E., Rivier, D. H. & Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145, 923-934 (1997).
    • (1997) Genetics , vol.145 , pp. 923-934
    • EhrenhoferMurray, A.E.1    Rivier, D.H.2    Rine, J.3
  • 47
    • 0029835806 scopus 로고    scopus 로고
    • Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines
    • Kuo, M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269-272 (1996).
    • (1996) Nature , vol.383 , pp. 269-272
    • Kuo, M.H.1
  • 48
    • 0034672126 scopus 로고    scopus 로고
    • Application of a novel fluorescence histone acetyltransferase enzyme assay to study the substrate specificity of human PCAF
    • Trievel, R. C., Li, F.-Y. & Marmorstein, R. Application of a novel fluorescence histone acetyltransferase enzyme assay to study the substrate specificity of human PCAF. Anal. Biochem. 287, 319-328 (2000).
    • (2000) Anal. Biochem. , vol.287 , pp. 319-328
    • Trievel, R.C.1    Li, F.-Y.2    Marmorstein, R.3
  • 49
    • 0034657420 scopus 로고    scopus 로고
    • 130-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex
    • 130-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 14, 1196-1208 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 1196-1208
    • John, S.1
  • 50
    • 0030606239 scopus 로고    scopus 로고
    • The transcriptional coactivators p300 and CBP are histone acetyltransferases
    • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959 (1996).
    • (1996) Cell , vol.87 , pp. 953-959
    • Ogryzko, V.V.1    Schiltz, R.L.2    Russanova, V.3    Howard, B.H.4    Nakatani, Y.5
  • 51
    • 0030797349 scopus 로고    scopus 로고
    • Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex
    • Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640-1650 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 1640-1650
    • Grant, P.A.1
  • 52
    • 0033567954 scopus 로고    scopus 로고
    • NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1 p and the ATM-related cofactor Tra1p
    • Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1 p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108-5119 (1999).
    • (1999) EMBO J. , vol.18 , pp. 5108-5119
    • Allard, S.1
  • 53
    • 0033605238 scopus 로고    scopus 로고
    • Expanded lysine acetylation specificity of Gcn5 in native complexes
    • Grant, P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895-5900 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 5895-5900
    • Grant, P.A.1
  • 54
    • 0033529845 scopus 로고    scopus 로고
    • Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator
    • Trievel, R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931-8936 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 8931-8936
    • Trievel, R.C.1
  • 55
    • 0033168714 scopus 로고    scopus 로고
    • Crystal structure of the histone acetyltransferase domain of the human P/CAF transcriptional regulator bound to coenzyme-A
    • Clements, A. et al. Crystal structure of the histone acetyltransferase domain of the human P/CAF transcriptional regulator bound to coenzyme-A. EMBO J. 18, 3521-3532 (1999).
    • (1999) EMBO J. , vol.18 , pp. 3521-3532
    • Clements, A.1
  • 56
    • 0033517354 scopus 로고    scopus 로고
    • Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide
    • Rojas, J. R. et al. Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature 401, 93-98 (1999). Revealed the first high-resolution structure of a HAT bound to a histone peptide substrate.
    • (1999) Nature , vol.401 , pp. 93-98
    • Rojas, J.R.1
  • 57
    • 0033168497 scopus 로고    scopus 로고
    • Solution structure of the catalytic domain of Tetrahymena GCN5 histone acetyltransferase in complex with coenzyme A
    • Un, Y., Fletcher, C. M., Zhou, J., Allis, C. D. & Wagner, G. Solution structure of the catalytic domain of Tetrahymena GCN5 histone acetyltransferase in complex with coenzyme A. Nature 400, 86-89 (1999).
    • (1999) Nature , vol.400 , pp. 86-89
    • Un, Y.1    Fletcher, C.M.2    Zhou, J.3    Allis, C.D.4    Wagner, G.5
  • 58
    • 0033635283 scopus 로고    scopus 로고
    • Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases
    • Yan, Y., Bariev, N. A., Haley, R. H., Berger, S. L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195-1205 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 1195-1205
    • Yan, Y.1    Bariev, N.A.2    Haley, R.H.3    Berger, S.L.4    Marmorstein, R.5
  • 59
    • 0032555689 scopus 로고    scopus 로고
    • Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily
    • Dutnall, R. N., Tafrov, S. T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427-438 (1998).
    • (1998) Cell , vol.94 , pp. 427-438
    • Dutnall, R.N.1    Tafrov, S.T.2    Sternglanz, R.3    Ramakrishnan, V.4
  • 61
    • 17444386662 scopus 로고    scopus 로고
    • The bromodomain: A chromatin-targeting module?
    • Winston, F. & Allis, C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601-604 (1999).
    • (1999) Nature Struct. Biol. , vol.6 , pp. 601-604
    • Winston, F.1    Allis, C.D.2
  • 62
    • 0032911635 scopus 로고    scopus 로고
    • Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction
    • Sterner, D. E. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19, 86-98 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 86-98
    • Sterner, D.E.1
  • 63
    • 0033499866 scopus 로고    scopus 로고
    • Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates
    • Kraus, W. L., Manning, E. T. & Kadonaga, J. T. Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol. Cell. Biol. 19, 8123-8135 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8123-8135
    • Kraus, W.L.1    Manning, E.T.2    Kadonaga, J.T.3
  • 64
    • 0031769946 scopus 로고    scopus 로고
    • Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins
    • Du, J., Nasir, I., Benton, B. K., Kladde, M. P. & Laurent, B. C. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150, 987-1005 (1998).
    • (1998) Genetics , vol.150 , pp. 987-1005
    • Du, J.1    Nasir, I.2    Benton, B.K.3    Kladde, M.P.4    Laurent, B.C.5
  • 66
    • 0033582943 scopus 로고    scopus 로고
    • The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4
    • Ornaghi, P., Ballario, P., Lena, A. M., Gonzalez, A. & Filetici, P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J. Mol. Biol. 287, 1-7 (1999).
    • (1999) J. Mol. Biol. , vol.287 , pp. 1-7
    • Ornaghi, P.1    Ballario, P.2    Lena, A.M.3    Gonzalez, A.4    Filetici, P.5
  • 67
    • 0033519641 scopus 로고    scopus 로고
    • Structure and ligand of a histone acetyltransferase bromodomain
    • Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-496 (1999). Provided the first evidence that bromodomains specifically target acetyl-lysine-containing histone substrates.
    • (1999) Nature , vol.399 , pp. 491-496
    • Dhalluin, C.1
  • 69
    • 0034669210 scopus 로고    scopus 로고
    • The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p
    • Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 19, 6141-6149 (2000).
    • (2000) EMBO J. , vol.19 , pp. 6141-6149
    • Owen, D.J.1
  • 70
    • 0034679625 scopus 로고    scopus 로고
    • Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation
    • Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714-3726 (2000).
    • (2000) EMBO J. , vol.19 , pp. 3714-3726
    • Clayton, A.L.1    Rose, S.2    Barratt, M.J.3    Mahadevan, L.C.4
  • 71
    • 0033639243 scopus 로고    scopus 로고
    • Phosphorylation of histone H3 correlates with transcriptionally active loci
    • Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev. 14, 3003-3013 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 3003-3013
    • Nowak, S.J.1    Corces, V.G.2
  • 72
    • 0033636595 scopus 로고    scopus 로고
    • Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation
    • Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905-915 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 905-915
    • Cheung, P.1
  • 73
    • 0033638105 scopus 로고    scopus 로고
    • Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14
    • Lo, W.-S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917-926 (2000). References 72 and 73 revealed that Ser10 phosphorylation of histone H3 is functionally linked to histone acetylation at Lys14 and to gene activation of a subset of Gcn5-dependent genes.
    • (2000) Mol. Cell , vol.5 , pp. 917-926
    • Lo, W.-S.1
  • 74
    • 0034604354 scopus 로고    scopus 로고
    • Mitotic phosphorylation of histone H3 is governed by IpI1/Aurora kinase and GIC7/PP1 phosphatase in budding yeast and nematodes
    • Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by IpI1/Aurora kinase and GIC7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279-291 (2000).
    • (2000) Cell , vol.102 , pp. 279-291
    • Hsu, J.Y.1
  • 75
    • 0034604329 scopus 로고    scopus 로고
    • Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans
    • De Souza, C. P., Osmani, A. H., Wu, L. P., Spotts, J. L. & Osmani, S. A. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102, 293-302 (2000). References 74 and 75 indicate that phosphorylation of histone H3 at Ser 10 is mediated by the IpI1/Aurora kinase and that this activity is functionally linked to chromosome condensation during mitosis.
    • (2000) Cell , vol.102 , pp. 293-302
    • De Souza, C.P.1    Osmani, A.H.2    Wu, L.P.3    Spotts, J.L.4    Osmani, S.A.5
  • 76
    • 0035937419 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
    • Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104, 817-827 (2001).
    • (2001) Cell , vol.104 , pp. 817-827
    • Hassan, A.H.1    Neely, K.E.2    Workman, J.L.3
  • 77
    • 0033617334 scopus 로고    scopus 로고
    • Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter
    • Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299-311 (1999).
    • (1999) Cell , vol.97 , pp. 299-311
    • Cosma, M.P.1    Tanaka, T.2    Nasmyth, K.3
  • 78
    • 0034269239 scopus 로고    scopus 로고
    • Global role for chromatin remodeling enzymes in mitotic gene expression
    • Krebs, J. E., Fry, C. J., Samuels, M. L. & Peterson, C. L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102, 587-593 (2000). References 76-78 indicate a functional link between histone acetylation and chromatin remodelling.
    • (2000) Cell , vol.102 , pp. 587-593
    • Krebs, J.E.1    Fry, C.J.2    Samuels, M.L.3    Peterson, C.L.4
  • 79
    • 0029560752 scopus 로고
    • Heterochromatin and gene expression in Drosophila
    • Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577-605 (1995).
    • (1995) Annu. Rev. Genet. , vol.29 , pp. 577-605
    • Weiler, K.S.1    Wakimoto, B.T.2
  • 80
    • 0030990291 scopus 로고    scopus 로고
    • Molecular model for telomeric heterochromatin in yeast
    • Grunstein, M. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9, 383-387 (1997).
    • (1997) Curr. Opin. Cell Biol. , vol.9 , pp. 383-387
    • Grunstein, M.1
  • 81
    • 0026928683 scopus 로고
    • Position effect variegation and chromatin proteins
    • Reuter, G. & Spierer, P. Position effect variegation and chromatin proteins. Bioessays 14, 605-612 (1992).
    • (1992) Bioessays , vol.14 , pp. 605-612
    • Reuter, G.1    Spierer, P.2
  • 82
    • 0028873187 scopus 로고
    • Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation
    • Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218-233 (1995).
    • (1995) Genes Dev. , vol.9 , pp. 218-233
    • Allshire, R.C.1    Nimmo, E.R.2    Ekwall, K.3    Javerzat, J.P.4    Cranston, G.5
  • 83
    • 0033959743 scopus 로고    scopus 로고
    • Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system
    • Schotta, G. & Reuter, G. Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Mol. Gen. Genet. 262, 916-920 (2000).
    • (2000) Mol. Gen. Genet. , vol.262 , pp. 916-920
    • Schotta, G.1    Reuter, G.2
  • 84
    • 0028110864 scopus 로고
    • The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes
    • Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822-3831 (1994).
    • (1994) EMBO J. , vol.13 , pp. 3822-3831
    • Tschiersch, B.1
  • 85
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599 (2000). Shows that suppressors of variegation gene product, Su(var)3-9, mediates gene silencing through its histone H3 methyltransferase activity.
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1
  • 86
    • 0031984480 scopus 로고    scopus 로고
    • SET domain proteins modulate chromatin domains in eu- and heterochromatin
    • Jenuwein, T., Laible, G., Dorn, R. & Reuter, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci. 54, 80-93 (1998).
    • (1998) Cell. Mol. Life Sci. , vol.54 , pp. 80-93
    • Jenuwein, T.1    Laible, G.2    Dorn, R.3    Reuter, G.4
  • 87
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 401, 120-124 (2001).
    • (2001) Nature , vol.401 , pp. 120-124
    • Bannister, A.J.1
  • 88
    • 0035282573 scopus 로고    scopus 로고
    • Methytation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methytation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 401, 116-120 (2001). References 87 and 88 indicate that the chromodomain of the heterochromatin-associated protein, HP1, targets the Lys9 of histone H3 for heterochromatin assembly and gene silencing.
    • (2001) Nature , vol.401 , pp. 116-120
    • Lachner, M.1    O'Carroll, D.2    Rea, S.3    Mechtler, K.4    Jenuwein, T.5
  • 89
    • 0025600929 scopus 로고
    • Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster
    • Eissenberg, J. C. et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 87, 9923-9927 (1990).
    • (1990) Proc. Natl Acad. Sci. USA , vol.87 , pp. 9923-9927
    • Eissenberg, J.C.1
  • 90
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110-113 (2001).
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 91
    • 0034699391 scopus 로고    scopus 로고
    • Chromodomains are protein-RNA interaction modules
    • Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein-RNA interaction modules. Nature 407, 405-409 (2000).
    • (2000) Nature , vol.407 , pp. 405-409
    • Akhtar, A.1    Zink, D.2    Becker, P.B.3
  • 92
    • 0030922584 scopus 로고    scopus 로고
    • Structure of the chromatin binding (chromo) domain from mouse modifier protein 1
    • Ball, L. J. et al. Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J. 16, 2473-2481 (1997). Provides the first atomic structure of a chromodomain.
    • (1997) EMBO J. , vol.16 , pp. 2473-2481
    • Ball, L.J.1
  • 93
    • 0029645289 scopus 로고
    • Functional analysis of the chromo domain of HP1
    • Platero, J. S., Hartnett, T. & Eissenberg, J. C. Functional analysis of the chromo domain of HP1. EMBO J. 14, 3977-3986 (1995).
    • (1995) EMBO J. , vol.14 , pp. 3977-3986
    • Platero, J.S.1    Hartnett, T.2    Eissenberg, J.C.3
  • 94
    • 0028839434 scopus 로고
    • Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius
    • Edmondson, S. P., Qiu, L. & Shriver, J. W. Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry 34, 13289-133304 (1995).
    • (1995) Biochemistry , vol.34 , pp. 13289-133304
    • Edmondson, S.P.1    Qiu, L.2    Shriver, J.W.3
  • 95
    • 0028533719 scopus 로고
    • Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus
    • Baumann, H., Knapp, S., Lundback, T., Ladenstein, R. & Hard, T. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nature Struct. Biol. 1, 808-819 (1994).
    • (1994) Nature Struct. Biol. , vol.1 , pp. 808-819
    • Baumann, H.1    Knapp, S.2    Lundback, T.3    Ladenstein, R.4    Hard, T.5
  • 96
    • 0028812044 scopus 로고
    • The chrome shadow domain, a second chrome domain in heterochromatin-binding protein-1, HP1
    • Aasland, R. & Stewart, A. F. The chrome shadow domain, a second chrome domain in heterochromatin-binding protein-1, HP1. Nucleic Acids Res. 23, 3168-3173 (1995).
    • (1995) Nucleic Acids Res. , vol.23 , pp. 3168-3173
    • Aasland, R.1    Stewart, A.F.2
  • 97
    • 0032215539 scopus 로고    scopus 로고
    • The heterochromatin protein 1 prevents telomere fusions in Drosophila
    • Fanti, L., Giovinazzo, G., Berloco, M. &, Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527-538 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 527-538
    • Fanti, L.1    Giovinazzo, G.2    Berloco, M.3    Pimpinelli, S.4
  • 98
    • 0033212963 scopus 로고    scopus 로고
    • Heterochomatin dynamics in mouse cells: Interaction between chromatin assembly factor 1 and HP1 proteins
    • Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochomatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529-540 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 529-540
    • Murzina, N.1    Verreault, A.2    Laue, E.3    Stillman, B.4
  • 99
    • 0033965983 scopus 로고    scopus 로고
    • The HP1 chromo shadow domain binds a consensus peptide pentamer
    • Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10, 27-30 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 27-30
    • Smothers, J.F.1    Henikoff, S.2
  • 100
    • 0034599522 scopus 로고    scopus 로고
    • The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chrome domain dimer
    • Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chrome domain dimer. EMBO J. 19, 1587-1597 (2000). Provides the first atomic structure of a chromoshadow domain.
    • (2000) EMBO J. , vol.19 , pp. 1587-1597
    • Brasher, S.V.1
  • 101
    • 0033592999 scopus 로고    scopus 로고
    • Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena
    • Strahl, B. D., Ohba, R., Cook, R. G. & Allis, C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 96, 14967-14972 (1999). Indicates that histone methylation can be correlated with gene activation.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 14967-14972
    • Strahl, B.D.1    Ohba, R.2    Cook, R.G.3    Allis, C.D.4
  • 102
    • 0033603396 scopus 로고    scopus 로고
    • Regulation of transcription by a protein methyltransferase
    • Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174-2177 (1999).
    • (1999) Science , vol.284 , pp. 2174-2177
    • Chen, D.1
  • 103
    • 0033861664 scopus 로고    scopus 로고
    • Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation
    • Stallcup, M. R. et al. Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem. Soc. Trans. 28, 415-418 (2000).
    • (2000) Biochem. Soc. Trans. , vol.28 , pp. 415-418
    • Stallcup, M.R.1
  • 104
    • 0033525078 scopus 로고    scopus 로고
    • An engine for nucleosome remodeling
    • Travers, A. An engine for nucleosome remodeling. Cell 96, 311-314 (1999).
    • (1999) Cell , vol.96 , pp. 311-314
    • Travers, A.1
  • 105
    • 0028292448 scopus 로고
    • The SNF/SW1 family of global transcriptional activators
    • Cartson, M. & Laurent, B. C. The SNF/SW1 family of global transcriptional activators. Curr. Opin. Cell Biol. 6, 396-402 (1994).
    • (1994) Curr. Opin. Cell Biol. , vol.6 , pp. 396-402
    • Cartson, M.1    Laurent, B.C.2
  • 106
    • 0028987268 scopus 로고
    • The SWI-SNF complex: A chromatin remodeling machine?
    • Peterson, C. L. & Tamkun, J. W. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143-146 (1995).
    • (1995) Trends Biochem. Sci. , vol.20 , pp. 143-146
    • Peterson, C.L.1    Tamkun, J.W.2
  • 107
    • 0343416249 scopus 로고    scopus 로고
    • Histone deacetylases: Silencers for hire
    • Ng, H. H. & Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25, 121-126 (2000).
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 121-126
    • Ng, H.H.1    Bird, A.2
  • 108
    • 0033000990 scopus 로고    scopus 로고
    • Histone acetylases and deacetylases in cell proliferation
    • Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet. Dev. 9, 40-48 (1999).
    • (1999) Curr Opin Genet. Dev. , vol.9 , pp. 40-48
    • Kouzarides, T.1
  • 109
    • 0032252209 scopus 로고    scopus 로고
    • NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities
    • Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851-861 (1998). Describes a transcriptional regulatory complex that has both histone deacetylase and chromatin remodelling activity, indicating a direct link between the histone acetylation status and chromatin remodelling.
    • (1998) Mol. Cell , vol.2 , pp. 851-861
    • Xue, Y.1
  • 110
    • 0034602928 scopus 로고    scopus 로고
    • RING domains: Master builders of molecular scaffolds?
    • Borden, K. L. RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295, 1103-1112 (2000).
    • (2000) J. Mol. Biol. , vol.295 , pp. 1103-1112
    • Borden, K.L.1
  • 111
    • 0028861418 scopus 로고
    • The PHD finger: Implications for chromatin-mediated transcriptional regulation
    • Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56-59 (1995).
    • (1995) Trends Biochem. Sci. , vol.20 , pp. 56-59
    • Aasland, R.1    Gibson, T.J.2    Stewart, A.F.3
  • 112
    • 0034308251 scopus 로고    scopus 로고
    • The lore of the RINGs: Substrate recognition and catalysis by ubiquitin ligases
    • Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429-439 (2000).
    • (2000) Trends Cell Biol. , vol.10 , pp. 429-439
    • Jackson, P.K.1
  • 113
    • 85047671736 scopus 로고    scopus 로고
    • The SANT domain: A putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB
    • Aasland, R., Stewart, A. F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87-88 (1996).
    • (1996) Trends Biochem. Sci. , vol.21 , pp. 87-88
    • Aasland, R.1    Stewart, A.F.2    Gibson, T.3
  • 114
    • 0033957471 scopus 로고    scopus 로고
    • The histone database: A comprehensive WWW resource for histories and histone fold-containing proteins
    • Sullivan, S. A., Aravind, L., Makalowski, I., Baxevanis, A. D. & Landsman, D. The histone database: a comprehensive WWW resource for histories and histone fold-containing proteins. Nucleic Acids Res. 28, 320-322 (2000).
    • (2000) Nucleic Acids Res. , vol.28 , pp. 320-322
    • Sullivan, S.A.1    Aravind, L.2    Makalowski, I.3    Baxevanis, A.D.4    Landsman, D.5
  • 115
    • 0030013203 scopus 로고    scopus 로고
    • Biochemistry and structural biology of transcription factor IID (TFIID)
    • Burley, S. K. & Roeder, R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769-799 (1996).
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 769-799
    • Burley, S.K.1    Roeder, R.G.2
  • 116
    • 0029869460 scopus 로고    scopus 로고
    • Structural similarity between TAFs and the heterotetrameric core of the histone octamer
    • Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316-322 (1996).
    • (1996) Nature , vol.380 , pp. 316-322
    • Xie, X.1
  • 117
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 angstrom resolution
    • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389, 251-260 (1997). Describes the atomic structure of the nucleosome core particle indicating that, at least in the context of the core particle, the histone tail regions are largely disordered.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.