메뉴 건너뛰기




Volumn 12, Issue 8, 2001, Pages 1377-1383

Transformation invariance of Lyapunov exponents

Author keywords

[No Author keywords available]

Indexed keywords

INVARIANCE; INVERSE PROBLEMS; MATHEMATICAL TRANSFORMATIONS;

EID: 0035372217     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0960-0779(00)00120-X     Document Type: Article
Times cited : (23)

References (17)
  • 1
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci 1963;20:130-41.
    • (1963) J Atmos Sci , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 6
    • 0031478493 scopus 로고    scopus 로고
    • Nonlinear dynamical models and jerky motion
    • Linz SJ. Nonlinear dynamical models and jerky motion. Am J Phys 1997;65:523-6.
    • (1997) Am J Phys , vol.65 , pp. 523-526
    • Linz, S.J.1
  • 7
    • 0000885387 scopus 로고    scopus 로고
    • Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
    • Eichhorn R, Linz SJ, Hänggi P. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Phys Rev E 1998;58:7151-64.
    • (1998) Phys Rev E , vol.58 , pp. 7151-7164
    • Eichhorn, R.1    Linz, S.J.2    Hänggi, P.3
  • 8
    • 48749145669 scopus 로고
    • The dimension of chaotic attractors
    • Farmer JD, Ott E, Yorke JA. The dimension of chaotic attractors. Physica 1983;7D:153-80.
    • (1983) Physica , vol.7 D , pp. 153-180
    • Farmer, J.D.1    Ott, E.2    Yorke, J.A.3
  • 9
    • 33845333666 scopus 로고
    • Is the dimension of chaotic attractors invariant under coordinate changes?
    • Ott E, Withers WD, Yorke JA. Is the dimension of chaotic attractors invariant under coordinate changes? J Stat Phys 1984;36:687-97.
    • (1984) J Stat Phys , vol.36 , pp. 687-697
    • Ott, E.1    Withers, W.D.2    Yorke, J.A.3
  • 10
    • 35949018382 scopus 로고
    • Ergodic theory of chaos and strange attractors
    • and references therein
    • Eckmann JP, Ruelle D. Ergodic theory of chaos and strange attractors. Rev Mod Phys 1985;57:617-56 and references therein.
    • (1985) Rev Mod Phys , vol.57 , pp. 617-656
    • Eckmann, J.P.1    Ruelle, D.2
  • 11
    • 0001640825 scopus 로고
    • Chaotic behavior of multidimensional difference equations
    • Peitgen HO, Walther HO, editors. Functional differential equations and approximation of fixed points, Berlin: Springer
    • Kaplan JL, Yorke JA. Chaotic behavior of multidimensional difference equations. In: Peitgen HO, Walther HO, editors. Functional differential equations and approximation of fixed points, Lecture notes in mathematics, vol. 730. Berlin: Springer, 1978. p. 204.
    • (1978) Lecture Notes in Mathematics , vol.730 , pp. 204
    • Kaplan, J.L.1    Yorke, J.A.2
  • 13
    • 84956256298 scopus 로고
    • Dimension, entropy and Liapunov exponents
    • Young LS. Dimension, entropy and Liapunov exponents. Ergod Theory Dynam Syst 1982;2:109-24.
    • (1982) Ergod Theory Dynam Syst , vol.2 , pp. 109-124
    • Young, L.S.1
  • 16
    • 0000543733 scopus 로고
    • A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
    • Oseledec VI. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Moscow Math Soc 1968;19:197.
    • (1968) Moscow Math Soc , vol.19 , pp. 197
    • Oseledec, V.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.