-
1
-
-
4344718611
-
-
W. M. Gelbart, A. Ben-Shaul, and D. Roux Springer-Verlag, New York
-
Micelles, Membranes, Microemulsions, and Monolayers, edited by W. M. Gelbart, A. Ben-Shaul, and D. Roux (Springer-Verlag, New York, 1989).
-
(1989)
Micelles, Membranes, Microemulsions, and Monolayers
-
-
-
8
-
-
84957344782
-
-
A. Saint-Jalmes, F. Graner, F. Gallet, and B. Houchmandzadeh, Europhys. Lett. 28, 565 (1994).
-
(1994)
Europhys. Lett.
, vol.28
, pp. 565
-
-
Saint-Jalmes, A.1
Graner, F.2
Gallet, F.3
Houchmandzadeh, B.4
-
11
-
-
0031673536
-
-
E. Hatta, H. Hosoi, H. Akiyama, T. Ishii, and K. Mukasa, Eur. Phys. J. B 2, 347 (1998).
-
(1998)
Eur. Phys. J. B
, vol.2
, pp. 347
-
-
Hatta, E.1
Hosoi, H.2
Akiyama, H.3
Ishii, T.4
Mukasa, K.5
-
12
-
-
0025991157
-
-
P. Tchoreloff, A. Gulik, B. Denizot, J. E. Proust, and F. Puisieux, Chem. Phys. Lipids 59, 151 (1991).
-
(1991)
Chem. Phys. Lipids
, vol.59
, pp. 151
-
-
Tchoreloff, P.1
Gulik, A.2
Denizot, B.3
Proust, J.E.4
Puisieux, F.5
-
13
-
-
0011523323
-
-
D. Andelman, F. Brochard, P.-G. de Gennes, and J.-F. Joanny, C. R. Acad. Sci. Paris Ser. C 301, 675 (1985);
-
(1985)
C. R. Acad. Sci. Paris Ser. C
, vol.301
, pp. 675
-
-
Andelman, D.1
Brochard, F.2
de Gennes, P.-G.3
Joanny, J.-F.4
-
19
-
-
0000693828
-
-
T. Kawakatsu, D. Andelman, K. Kawasaki, and T. Taniguchi, J. Phys. II 3, 971 (1993);
-
(1993)
J. Phys. II
, vol.3
, pp. 971
-
-
Kawakatsu, T.1
Andelman, D.2
Kawasaki, K.3
Taniguchi, T.4
-
20
-
-
0000174468
-
-
J. Phys. IIT. Taniguchi, K. Kawasaki, D. Andelman, and T. Kawakatsu, 4, 1333 (1994).
-
(1994)
J. Phys. II
, vol.4
, pp. 1333
-
-
Taniguchi, T.1
Kawasaki, K.2
Andelman, D.3
Kawakatsu, T.4
-
29
-
-
0029789206
-
-
M. M. Lipp, K. Y. C. Lee, J. A. Zasadzinski, and A. J. Waring, Science 273, 1196 (1996);
-
(1996)
Science
, vol.273
, pp. 1196
-
-
Lipp, M.M.1
Lee, K.Y.C.2
Zasadzinski, J.A.3
Waring, A.J.4
-
30
-
-
0030960209
-
-
M. M. Lipp, K. Y. C. Lee, A. Waring, and J. A. Zasadzinski, Biophys. J. 72, 2783 (1997);
-
(1997)
Biophys. J.
, vol.72
, pp. 2783
-
-
Lipp, M.M.1
Lee, K.Y.C.2
Waring, A.3
Zasadzinski, J.A.4
-
31
-
-
0000946865
-
-
M. M. Lipp, K. Y. C. Lee, D. Y. Takamoto, J. A. Zasadzinski, and A. J. Waring, Phys. Rev. Lett. 81, 1650 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1650
-
-
Lipp, M.M.1
Lee, K.Y.C.2
Takamoto, D.Y.3
Zasadzinski, J.A.4
Waring, A.J.5
-
33
-
-
0034596573
-
-
H. Diamant, T. A. Witten, A. Gopal, and K. Y. C. Lee, Europhys. Lett. 52, 171 (2000).
-
(2000)
Europhys. Lett.
, vol.52
, pp. 171
-
-
Diamant, H.1
Witten, T.A.2
Gopal, A.3
Lee, K.Y.C.4
-
34
-
-
85035297749
-
-
One can just as well consider also differing bending moduli of the two domains 23. The resulting expressions are more cumbersome with essentially the same physics. For brevity we consider in the current paper a single, uniform bending modulus K
-
One can just as well consider also differing bending moduli of the two domains 23. The resulting expressions are more cumbersome with essentially the same physics. For brevity we consider in the current paper a single, uniform bending modulus K.
-
-
-
-
35
-
-
85035263823
-
-
The exact relation between the applied lateral pressure and surface tension in a nonflat monolayer is a subtle issue 8. In this paper we bypass it by referring to the tension (Formula presented) alone, bearing in mind that it must decrease upon increasing pressure
-
The exact relation between the applied lateral pressure and surface tension in a nonflat monolayer is a subtle issue 8. In this paper we bypass it by referring to the tension (Formula presented) alone, bearing in mind that it must decrease upon increasing pressure.
-
-
-
-
36
-
-
85035288219
-
-
We do not consider fluctuations of the surface; its equilibrium shape is thus given by the minimum of the elastic energy. This “zero-temperature” assumption is well justified in the current case, as will be demonstrated in Sec. VII
-
We do not consider fluctuations of the surface; its equilibrium shape is thus given by the minimum of the elastic energy. This “zero-temperature” assumption is well justified in the current case, as will be demonstrated in Sec. VII.
-
-
-
-
37
-
-
85035289206
-
-
We ignore in this paper the possibility of a sharp change in slope, a crease, at the contact line. Such a crease would alter some of our quantitative conclusions. Though such creases are consistent with the symmetry of the system, we know of no estimate of their magnitude
-
We ignore in this paper the possibility of a sharp change in slope, a crease, at the contact line. Such a crease would alter some of our quantitative conclusions. Though such creases are consistent with the symmetry of the system, we know of no estimate of their magnitude.
-
-
-
-
38
-
-
85035302261
-
-
All of the above results, except for the precise profile [Eq. (7)], hold also for a finite sheet clamped at its ends (i.e., maintaining the boundary conditions of vanishing (Formula presented) and (Formula presented) at both ends)
-
All of the above results, except for the precise profile [Eq. (7)], hold also for a finite sheet clamped at its ends (i.e., maintaining the boundary conditions of vanishing (Formula presented) and (Formula presented) at both ends).
-
-
-
-
39
-
-
85035290197
-
-
Here the bare line tension (Formula presented) is assumed to contain all the energetic contributions proportional to the boundary length, including both short-range and electrostatic interactions; see also Ref. 45
-
Here the bare line tension (Formula presented) is assumed to contain all the energetic contributions proportional to the boundary length, including both short-range and electrostatic interactions; see also Ref. 45.
-
-
-
-
40
-
-
85035289478
-
-
Note again that the relevance of this instability relies on the nonlinearity of our calculation. In a linearized theory (assuming (Formula presented) one would get for the reduction in line tension (Formula presented), which could not compete with the bare line tension (Formula presented)
-
Note again that the relevance of this instability relies on the nonlinearity of our calculation. In a linearized theory (assuming (Formula presented) one would get for the reduction in line tension (Formula presented), which could not compete with the bare line tension (Formula presented).
-
-
-
-
42
-
-
0003829793
-
-
Oxford University Press, Oxford
-
J. J. Binney, N. J. Dorwick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Oxford University Press, Oxford, 1993).
-
(1993)
The Theory of Critical Phenomena
-
-
Binney, J.J.1
Dorwick, N.J.2
Fisher, A.J.3
Newman, M.E.J.4
-
47
-
-
0034249489
-
-
W. R. Schief, L. Touryan, S. B. Hall, and V. Vogel, J. Phys. Chem. B 104, 7388 (2000);
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 7388
-
-
Schief, W.R.1
Touryan, L.2
Hall, S.B.3
Vogel, V.4
-
49
-
-
0343150947
-
-
R. Miller, R. Wüstneck, J. Krägel, and G. Kretzschmar, Colloids Surf., A 111, 75 (1996).
-
(1996)
Colloids Surf., A
, vol.111
, pp. 75
-
-
Miller, R.1
Wüstneck, R.2
Krägel, J.3
Kretzschmar, G.4
-
54
-
-
0000131786
-
-
S. Rivière, S. Hénon, J. Meunier, G. Albrecht, M. M. Boissonnade, and A. Baszkin, Phys. Rev. Lett. 75, 2506 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2506
-
-
Rivière, S.1
Hénon, S.2
Meunier, J.3
Albrecht, G.4
Boissonnade, M.M.5
Baszkin, A.6
-
64
-
-
85035261427
-
-
See, e.g., Ref. 2, Chap. 1
-
See, e.g., Ref. 2, Chap. 1.
-
-
-
|