-
1
-
-
0002484268
-
Lossless inverse scattering and reproducing kernels for upper triangular operators
-
in: Birkhäuser, Basel
-
D. Alpay, P. Dewilde, H. Dym, Lossless inverse scattering and reproducing kernels for upper triangular operators, in: Operator Theory: Advances and Applications, vol. 47, Birkhäuser, Basel, 1990, pp. 61-135.
-
(1990)
Operator Theory: Advances and Applications
, vol.47
, pp. 61-135
-
-
Alpay, D.1
Dewilde, P.2
Dym, H.3
-
2
-
-
0346158244
-
Nehari interpolation problem for rational matrix functions: The generic case
-
in: Springer, Berlin
-
∞ -Control Theory, Lecture Notes in Mathematics, vol. 1496, Springer, Berlin, 1991.
-
(1991)
∞-Control Theory, Lecture Notes in Mathematics
, vol.1496
-
-
Ball, J.A.1
Gohberg, I.2
Rodman, L.3
-
3
-
-
38249010632
-
The four-block Adamjan-Arov-Krein problem
-
Ball J.A., Jonckheere E.A. The four-block Adamjan-Arov-Krein problem. J. Math. Anal. Appl. 170:1992;322-342.
-
(1992)
J. Math. Anal. Appl.
, vol.170
, pp. 322-342
-
-
Ball, J.A.1
Jonckheere, E.A.2
-
4
-
-
0011365975
-
Reduction of the abstract four block problem to a Nehari problem
-
in: Birkhäuser, Basel
-
J. Ball, I. Gohberg, M. Kaashoek, Reduction of the abstract four block problem to a Nehari problem, in: Time-Variant Systems and Interpolation, Operator Theory: Advances and Applications, vol. 58, Birkhäuser, Basel, 1992, pp. 121-141.
-
(1992)
Time-Variant Systems and Interpolation, Operator Theory: Advances and Applications
, vol.58
, pp. 121-141
-
-
Ball, J.1
Gohberg, I.2
Kaashoek, M.3
-
5
-
-
0001521488
-
A Beurling-Lax theorem for the Lie group U(m,n) which contains most classical interpolation theory
-
Ball J.A., Helton J.W. A Beurling-Lax theorem for the Lie group. U(m,n) which contains most classical interpolation theory J. Operator Theory. 8:1983;107-142.
-
(1983)
J. Operator Theory
, vol.8
, pp. 107-142
-
-
Ball, J.A.1
Helton, J.W.2
-
6
-
-
0023404396
-
∞ norm: Parametrization of all suboptimal solutions
-
∞ norm: parametrization of all suboptimal solutions Int. J. Control. 46:1987;685-816.
-
(1987)
Int. J. Control
, vol.46
, pp. 685-816
-
-
Ball, J.A.1
Cohen, M.2
-
7
-
-
84987189177
-
A factorization principle for stabilization of linear control systems
-
Ball J.A., Helton J.W., Verma M. A factorization principle for stabilization of linear control systems. Int. J. Robust Nonlinear Control. 4:1994;229-294.
-
(1994)
Int. J. Robust Nonlinear Control
, vol.4
, pp. 229-294
-
-
Ball, J.A.1
Helton, J.W.2
Verma, M.3
-
8
-
-
0000164494
-
Interpolation for upper triangular operators
-
in: Birkhäuser, Basel
-
P. Dewilde, H. Dym, Interpolation for upper triangular operators, in: Operator Theory: Advances and Applications, vol. 56. Birkhäuser, Basel, 1992, pp. 153-260.
-
(1992)
Operator Theory: Advances and Applications
, vol.56
, pp. 153-260
-
-
Dewilde, P.1
Dym, H.2
-
9
-
-
0022131031
-
Uniformly optimal control of linear feedback systems
-
Feintuch A., Francis B. Uniformly optimal control of linear feedback systems. Automatica. 21(5):1985;563-574.
-
(1985)
Automatica
, vol.21
, Issue.5
, pp. 563-574
-
-
Feintuch, A.1
Francis, B.2
-
11
-
-
0021441691
-
∞-error bounds
-
∞ -error bounds Int. J. Control. 39(6):1984;1115-1193.
-
(1984)
Int. J. Control
, vol.39
, Issue.6
, pp. 1115-1193
-
-
Glover, K.1
-
12
-
-
0026121570
-
A characterization of all solutions to the four block general distance problem
-
Glover K., Limebeer D.J.N., Doyle J.C., Kasenally E.M., Safonov M.G. A characterization of all solutions to the four block general distance problem. SIAM J. Control Optim. 29:1991;283-324.
-
(1991)
SIAM J. Control Optim.
, vol.29
, pp. 283-324
-
-
Glover, K.1
Limebeer, D.J.N.2
Doyle, J.C.3
Kasenally, E.M.4
Safonov, M.G.5
-
13
-
-
0026850973
-
A structured approximation problem with applications to frequency weighted model reduction
-
Glover K., Limebeer D.J.N., Hung Y.S. A structured approximation problem with applications to frequency weighted model reduction. IEEE Trans. Automat. Control. 37(4):1992;447-465.
-
(1992)
IEEE Trans. Automat. Control
, vol.37
, Issue.4
, pp. 447-465
-
-
Glover, K.1
Limebeer, D.J.N.2
Hung, Y.S.3
-
14
-
-
0011281727
-
Time variant extension problems of Nehari type and the band method
-
in: Springer, Berlin
-
∞ -Control Theory, Lecture Notes in Mathematics, vol. 496. Springer, Berlin, 1991.
-
(1991)
∞-Control Theory, Lecture Notes in Mathematics
, vol.496
-
-
Gohberg, I.1
Kaashoek, M.A.2
Woerdeman, H.J.3
-
17
-
-
0026869023
-
∞ controller synthesis by J-lossless coprime factorization
-
∞ controller synthesis by J-lossless coprime factorization SIAM J. Control Optim. 30(3):1992;522-547.
-
(1992)
SIAM J. Control Optim.
, vol.30
, Issue.3
, pp. 522-547
-
-
Green, M.1
-
19
-
-
0030169660
-
The four block Nehari problem: A Popov function approach
-
Ionescu V., Oara C. The four block Nehari problem: a Popov function approach. IMA J. Math. Control Inform. 13(2):1996;173-194.
-
(1996)
IMA J. Math. Control Inform.
, vol.13
, Issue.2
, pp. 173-194
-
-
Ionescu, V.1
Oara, C.2
-
20
-
-
0030474950
-
The time-varying discrete four block Nehari problem
-
Ionescu V., Oara C. The time-varying discrete four block Nehari problem. Integral Equations Operator Theory. 26:1997;404-431.
-
(1997)
Integral Equations Operator Theory
, vol.26
, pp. 404-431
-
-
Ionescu, V.1
Oara, C.2
-
22
-
-
0000899476
-
The Nehari-Takagi problem for input-output operators of time-varying continuous-time systems
-
Kaashoek M.A., Kos J. The Nehari-Takagi problem for input-output operators of time-varying continuous-time systems. Integral Equations Operator Theory. 18:1994;435-467.
-
(1994)
Integral Equations Operator Theory
, vol.18
, pp. 435-467
-
-
Kaashoek, M.A.1
Kos, J.2
-
23
-
-
0001362980
-
On bounded bilinear forms
-
Nehari Z. On bounded bilinear forms. Ann. Math. 65:1957;153-162.
-
(1957)
Ann. Math.
, vol.65
, pp. 153-162
-
-
Nehari, Z.1
-
24
-
-
0011287876
-
-
Ph.D. Thesis, University Polytechnica Bucharest, Staff Press, ISBN 973-96796-9
-
C. Oara, Generalized Riccati theory: a Popov function approach, Ph.D. Thesis, University Polytechnica Bucharest, Staff Press, 1995, ISBN 973-96796-9.
-
(1995)
Generalized Riccati Theory: A Popov Function Approach
-
-
Oara, C.1
|