-
1
-
-
0024621631
-
Sparse matrix test problems
-
I. DUFF, R. GRIMES, AND J. LEWIS, Sparse matrix test problems, ACM Trans. Math. Software, 15 (1989), pp. 1-14.
-
(1989)
ACM Trans. Math. Software
, vol.15
, pp. 1-14
-
-
Duff, I.1
Grimes, R.2
Lewis, J.3
-
2
-
-
38249006319
-
Field of values and iterative methods
-
M. EIERMANN, Field of values and iterative methods, Linear Algebra Appl., 180 (1993), pp. 167-198.
-
(1993)
Linear Algebra Appl.
, vol.180
, pp. 167-198
-
-
Eiermann, M.1
-
3
-
-
0021416130
-
Necessary and sufficient conditions for the existence of a conjugate gradient method
-
V. FABER AND T. MANTEUFFEL, Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352-362.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 352-362
-
-
Faber, V.1
Manteuffel, T.2
-
4
-
-
25444452938
-
QMR: A quasi-minimal residual method for solving non-Hermitian linear systems
-
R. FREUND AND N. NACHTIGAL, QMR: A quasi-minimal residual method for solving non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.
-
(1991)
Numer. Math.
, vol.60
, pp. 315-339
-
-
Freund, R.1
Nachtigal, N.2
-
5
-
-
0004236492
-
-
The Johns Hopkins University Press, Baltimore, London
-
G.H. GOLUB AND C.F. VAN LOAN, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, London, 1996.
-
(1996)
Matrix Computations, 3rd Ed.
-
-
Golub, G.H.1
Van Loan, C.F.2
-
6
-
-
0002251447
-
Matrices that generate same Krylov residual spaces
-
Recent Advances in Iterative Methods, G. Golub, A. Greenbaum, and M. Luskin, eds., Springer-Verlag, New York
-
A. GREENBAUM AND Z. STRAKOS, Matrices that generate same Krylov residual spaces, in Recent Advances in Iterative Methods, G. Golub, A. Greenbaum, and M. Luskin, eds., IMA Vol. Math. Appl. 60, Springer-Verlag, New York, 1994.
-
(1994)
IMA Vol. Math. Appl.
, vol.60
-
-
Greenbaum, A.1
Strakos, Z.2
-
7
-
-
0003241196
-
Iterative Methods for Solving Linear Systems
-
SIAM, Philadelphia
-
A. GREENBAUM, Iterative Methods for Solving Linear Systems, Frontiers Appl. Math. 17, SIAM, Philadelphia, 1997.
-
(1997)
Frontiers Appl. Math.
, vol.17
-
-
Greenbaum, A.1
-
8
-
-
0001930482
-
Matrix Nearness Problems and Applications
-
Oxford University Press, New York
-
N.J. HIGHAM, Matrix Nearness Problems and Applications, Inst. Math. Appl. Conf. Ser. New Ser. 22, Oxford University Press, New York, 1989.
-
(1989)
Inst. Math. Appl. Conf. Ser. New Ser.
, vol.22
-
-
Higham, N.J.1
-
9
-
-
0041754364
-
-
Tech. Report 168, Department of Scientific Computing, Uppsala University, Uppsala, Sweden
-
S. HOLMGREN AND K. OTTO, A Framework for Polynomial Preconditioners Based on Fast Transforms II: PDE Applications, Tech. Report 168, Department of Scientific Computing, Uppsala University, Uppsala, Sweden, 1995.
-
(1995)
A Framework for Polynomial Preconditioners Based on Fast Transforms II: PDE Applications
-
-
Holmgren, S.1
Otto, K.2
-
10
-
-
0001156782
-
A framework for polynomial preconditioners based on fast transforms II: PDE applications
-
S. HOLMGREN AND K. OTTO, A framework for polynomial preconditioners based on fast transforms II: PDE applications, BIT, 38 (1998), pp. 721-736.
-
(1998)
BIT
, vol.38
, pp. 721-736
-
-
Holmgren, S.1
Otto, K.2
-
13
-
-
0042255012
-
-
Helsinki Univ. Tech Math. Report A412, Helsinki University of Technology, Espoo, Finland
-
M. HUHTANEN, Ideal GMRES Can Be Bounded from Below by Three Factors, Helsinki Univ. Tech Math. Report A412, Helsinki University of Technology, Espoo, Finland, 1999.
-
(1999)
Ideal GMRES Can be Bounded from below by Three Factors
-
-
Huhtanen, M.1
-
14
-
-
0036056705
-
A stratification of the set of normal matrices
-
to appear
-
M. HUHTANEN, A stratification of the set of normal matrices, SIAM J. Matrix Anal. Appl., to appear.
-
SIAM J. Matrix Anal. Appl.
-
-
Huhtanen, M.1
-
15
-
-
0042255013
-
-
Helsinki Univ. Tech. Math Report A418, Helsinki University of Technology, Espoo, Finland
-
M. HUHTANEN, Pole Assignment Problems for Error Bounds for GMRES, Helsinki Univ. Tech. Math Report A418, Helsinki University of Technology, Espoo, Finland, 1999.
-
(1999)
Pole Assignment Problems for Error Bounds for GMRES
-
-
Huhtanen, M.1
-
16
-
-
0034396570
-
Minimal decompositions and iterative methods
-
M. HUHTANEN AND O. NEVANLINNA, Minimal decompositions and iterative methods, Numer. Math., 86 (2000), pp. 257-281.
-
(2000)
Numer. Math.
, vol.86
, pp. 257-281
-
-
Huhtanen, M.1
Nevanlinna, O.2
-
17
-
-
84875379930
-
-
MATHWORKS, Matlab, www.mathworks.com/products/matlab.
-
Matlab
-
-
-
18
-
-
0001517599
-
How fast are nonsymmetric matrix iterations?
-
N.M. NACHTIGAL, S.C. REDDY, AND L.N. TREFETHEN, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl. 13 (1992), pp. 778-795.
-
(1992)
SIAM J. Matrix Anal. Appl.
, vol.13
, pp. 778-795
-
-
Nachtigal, N.M.1
Reddy, S.C.2
Trefethen, L.N.3
-
20
-
-
0000305146
-
Closest normal matrix finally found!
-
A. RUHE, Closest normal matrix finally found!, BIT, 27 (1987), pp. 585-598.
-
(1987)
BIT
, vol.27
, pp. 585-598
-
-
Ruhe, A.1
-
21
-
-
0000048673
-
GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems
-
Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
-
(1986)
SIAM J. Sci. Statist. Comput.
, vol.7
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
-
22
-
-
0000005482
-
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
-
H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
-
(1992)
SIAM J. Sci. Statist. Comput.
, vol.13
, pp. 631-644
-
-
Van Der Vorst, H.A.1
-
23
-
-
0000298534
-
The question of non-self-adjoint extensions of the conjugate gradients methods is closed
-
V.V. VOEVODIN, The question of non-self-adjoint extensions of the conjugate gradients methods is closed, USSR Comput. Math. and Math. Phys., 23 (1983), pp. 143-144.
-
(1983)
USSR Comput. Math. and Math. Phys.
, vol.23
, pp. 143-144
-
-
Voevodin, V.V.1
|