메뉴 건너뛰기




Volumn E84-D, Issue 3, 2001, Pages 290-316

Polynomial learnability of stochastic rules with respect to the KL-divergence and quadratic distance

Author keywords

KL divergence; P concepts; PAC learning; Quadratic distance; Stochastic rules

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; CONFORMAL MAPPING; FINITE AUTOMATA; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; OPTIMIZATION; POLYNOMIALS; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES; SET THEORY;

EID: 0035281455     PISSN: 09168532     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (18)
  • 3
    • 0001841122 scopus 로고
    • On the computational complexity of approximating probability distributions by probabilistic automata
    • (1992) Machine Learning , vol.9 , Issue.2 , pp. 205-260
    • Abe, N.1    Warmuth, M.K.2
  • 13
    • 0000788854 scopus 로고
    • The gradient projection method for nonlinear programming. Part I. Linear constraints
    • (1960) J. S.I.A.M. , vol.8 , Issue.1 , pp. 181-217
    • Rosen, J.B.1
  • 14
    • 0004087471 scopus 로고    scopus 로고
    • The design and analysis of efficient learning algorithms
    • Ph.D. Thesis, M.I.T., 1990
    • Schapire, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.