-
4
-
-
0030502820
-
A new technique to estimate the regularity of refinable functions
-
Cohen A., Daubechies I. A new technique to estimate the regularity of refinable functions. Revista Matemática Iberoamericana. 12:1996;527-591.
-
(1996)
Revista Matemática Iberoamericana
, vol.12
, pp. 527-591
-
-
Cohen, A.1
Daubechies, I.2
-
7
-
-
0038571618
-
A new approach to interpolating scaling functions
-
Dahlke S., Gröchenig K., Maas P. A new approach to interpolating scaling functions. Appl. Anal. 72:1999;485-500.
-
(1999)
Appl. Anal.
, vol.72
, pp. 485-500
-
-
Dahlke, S.1
Gröchenig, K.2
Maas, P.3
-
9
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41:1988;909-996.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
10
-
-
0001295624
-
Orthonormal bases of compactly supported wavelets, II. Variations on a theme
-
Daubechies I. Orthonormal bases of compactly supported wavelets, II. Variations on a theme. SIAM J. Math. Anal. 24:1993;499-519.
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 499-519
-
-
Daubechies, I.1
-
11
-
-
0346184712
-
Multivariate refinable interpolating functions
-
Derado J. Multivariate refinable interpolating functions. Appl. Comput. Harmon. Anal. 7:1999;165-183.
-
(1999)
Appl. Comput. Harmon. Anal.
, vol.7
, pp. 165-183
-
-
Derado, J.1
-
16
-
-
0002948743
-
Construction of bivariate compactly supported orthonormal multiwavelets with arbitrarily high regularity
-
He W., Lai M.-J. Construction of bivariate compactly supported orthonormal multiwavelets with arbitrarily high regularity. Appl. Comput. Harmon. Anal. 6:1999;53-74.
-
(1999)
Appl. Comput. Harmon. Anal.
, vol.6
, pp. 53-74
-
-
He, W.1
Lai, M.-J.2
-
17
-
-
0011461344
-
Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets
-
Ji H., Riemenschneider S., Shen Z. Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets. Stud. Appl. Math. 34:1999;173-204.
-
(1999)
Stud. Appl. Math.
, vol.34
, pp. 173-204
-
-
Ji, H.1
Riemenschneider, S.2
Shen, Z.3
-
19
-
-
0002019220
-
Polynômes de Bernstein en théorie des ondelettes
-
Lemariè-Rieusset P. G. Polynômes de Bernstein en théorie des ondelettes. C. R. Acad. Sci. Paris. 319:1994;21-24.
-
(1994)
C. R. Acad. Sci. Paris
, vol.319
, pp. 21-24
-
-
Lemariè-Rieusset, P.G.1
-
20
-
-
0003786739
-
-
Electronic Research Laboratory, College of Engineering, University of California, Berkeley
-
H. Park, A computational theory of Laurent polynomial rings and multidimensional FIR systems, Electronic Research Laboratory, College of Engineering, University of California, Berkeley, 1995.
-
(1995)
A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR Systems
-
-
Park, H.1
-
22
-
-
0347445841
-
Construction of orthonormal wavelets
-
J. J. Benedetto, & M. W. Frazier. Boca Raton: CRC Press
-
Strichartz R. Construction of orthonormal wavelets. Benedetto J. J., Frazier M. W. Wavelets and Applications. 1994;CRC Press, Boca Raton.
-
(1994)
Wavelets and Applications
-
-
Strichartz, R.1
|