-
1
-
-
0001421636
-
-
The frequently quoted Kohlrausch paper published in 1847 does not mention stretched exponentials
-
R. Kohlrausch, Annu. Rev. Phys. Chem. 91, 179 (1854). The frequently quoted Kohlrausch paper published in 1847 does not mention stretched exponentials.
-
(1854)
Annu. Rev. Phys. Chem.
, vol.91
, pp. 179
-
-
Kohlrausch, R.1
-
3
-
-
5244221149
-
-
R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 958
-
-
Palmer, R.G.1
Stein, D.L.2
Abrahams, E.3
Anderson, P.W.4
-
4
-
-
84977423806
-
-
H. Sher, M. F. Schlesinger, and J. T. Bendler, Phys. Today 44 (1), 26 (1991).
-
Phys. Today
, vol.44
, Issue.1
, pp. 26
-
-
Sher, H.1
Schlesinger, M.F.2
Bendler, J.T.3
-
6
-
-
0001116558
-
-
A. Bunde, S. Havlin, J. Klafter, G. Gräff, and A. Shehter, Phys. Rev. Lett. 78, 3338 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.78
, pp. 3338
-
-
Bunde, A.1
Havlin, S.2
Klafter, J.3
Gräff, G.4
Shehter, A.5
-
9
-
-
0001500872
-
-
J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Phys. Rev. B 41, 9183 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9183
-
-
Adler, J.1
Meir, Y.2
Aharony, A.3
Harris, A.B.4
-
10
-
-
33750182682
-
-
J. Adler, Y. Meir, A. Aharony, and L. Klein, J. Stat. Phys. 58, 511 (1990).
-
(1990)
J. Stat. Phys.
, vol.58
, pp. 511
-
-
Adler, J.1
Meir, Y.2
Aharony, A.3
Klein, L.4
-
12
-
-
0039656237
-
-
H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor, A. M. Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 32, 1 (1999).
-
(1999)
J. Phys. A
, vol.32
, pp. 1
-
-
Ballesteros, H.G.1
Fernandez, L.A.2
Martin-Mayor, V.3
Sudupe, A.M.4
Parisi, G.5
Ruiz-Lorenzo, J.J.6
-
16
-
-
0023291681
-
-
I. A. Campbell, J. M. Flesselles, R. Jullien, and R. Botet, J. Phys. C 20, L47 (1987).
-
(1987)
J. Phys. C
, vol.20
, pp. L47
-
-
Campbell, I.A.1
Flesselles, J.M.2
Jullien, R.3
Botet, R.4
-
19
-
-
85035292073
-
-
(Formula presented) is defined by (Formula presented), where (Formula presented) is the area of a (hyper)disk of radius (Formula presented). Using standard algebra, one gets (Formula presented) with (Formula presented)
-
(Formula presented) is defined by (Formula presented), where (Formula presented) is the area of a (hyper)disk of radius (Formula presented). Using standard algebra, one gets (Formula presented) with (Formula presented).
-
-
-
-
22
-
-
85035274981
-
-
Note that the jump lengths are uniformly distributed between 0 and (Formula presented). It is a well known result of the percolation theory that the precise form of the length distribution (as soon as it is bounded) is irrelevant for the determination of the critical exponents
-
Note that the jump lengths are uniformly distributed between 0 and (Formula presented). It is a well known result of the percolation theory that the precise form of the length distribution (as soon as it is bounded) is irrelevant for the determination of the critical exponents.
-
-
-
-
24
-
-
5844270925
-
-
E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu, J. Chem. Phys. 97, 3950 (1992).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 3950
-
-
Bartsch, E.1
Antonietti, M.2
Schupp, W.3
Sillescu, H.4
-
25
-
-
0001374744
-
-
L. Angelani, G. Parisi, G. Ruocco and G. Viliani, Phys. Rev. Lett. 81, 4648 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4648
-
-
Angelani, L.1
Parisi, G.2
Ruocco, G.3
Viliani, G.4
|