-
2
-
-
0007109637
-
Quantum affine algebras
-
Chari V., Pressley A., Quantum affine algebras, Comm. Math. Phys. 142 (2) (1991) 261-283.
-
(1991)
Comm. Math. Phys.
, vol.142
, Issue.2
, pp. 261-283
-
-
Chari, V.1
Pressley, A.2
-
3
-
-
0001334959
-
Representations of quantum groups at roots of 1
-
Birkhäuser, Boston MA
-
De Concini C., Kac V.G., Representations of quantum groups at roots of 1, in: Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (Paris, 1989), Birkhäuser, Boston MA, 1990, pp. 471-506.
-
(1990)
Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (Paris, 1989)
, pp. 471-506
-
-
De Concini, C.1
Kac, V.G.2
-
4
-
-
0002482915
-
On some unsolved problems in quantum group theory
-
Springer, Berlin
-
Drinfel'd V.G., On some unsolved problems in quantum group theory, in: Quantum Groups (Leningrad, 1990), Springer, Berlin, 1992, pp. 1-8.
-
(1992)
Quantum Groups (Leningrad, 1990)
, pp. 1-8
-
-
Drinfel'd, V.G.1
-
6
-
-
0034662547
-
Characters of bounded sl(2) modules
-
Greenstein J., Characters of bounded sl(2) modules, J. Algebra 230 (2) (2000) 540-557.
-
(2000)
J. Algebra
, vol.230
, Issue.2
, pp. 540-557
-
-
Greenstein, J.1
-
7
-
-
0033116499
-
A completion of the quantized enveloping algebra of a Kac - Moody algebra
-
Joseph A., A completion of the quantized enveloping algebra of a Kac - Moody algebra, J. Algebra 214 (1) (1999) 235-275.
-
(1999)
J. Algebra
, vol.214
, Issue.1
, pp. 235-275
-
-
Joseph, A.1
-
8
-
-
0035216495
-
On an affine quantum KPRV determinant at q = 1
-
Joseph A., On an affine quantum KPRV determinant at q = 1, Bull. Sci. Math. 125 (1) (2001) 1-26.
-
(2001)
Bull. Sci. Math.
, vol.125
, Issue.1
, pp. 1-26
-
-
Joseph, A.1
-
12
-
-
0001100313
-
Lie group representations on polynomial rings
-
Kostant B., Lie group representations on polynomial rings, Amer. J. Math. 85 (1963) 327-404.
-
(1963)
Amer. J. Math.
, vol.85
, pp. 327-404
-
-
Kostant, B.1
-
13
-
-
0000898551
-
Clifford algebra analogue of the Hopf - Koszul - Samelson theorem, the ρ-decomposition C (g) = end V ρ ⊕ C (P), and the g-module structure of ∧ g
-
Kostant B., Clifford algebra analogue of the Hopf - Koszul - Samelson theorem, the ρ-decomposition C (g) = end V ρ ⊕ C (P), and the g-module structure of ∧ g, Adv. Math. 125 (2) (1997) 275-350.
-
(1997)
Adv. Math.
, vol.125
, Issue.2
, pp. 275-350
-
-
Kostant, B.1
-
14
-
-
0003978414
-
-
Addison-Wesley, Reading, MA
-
Lang S., Algebra, Addison-Wesley, Reading, MA, 1965.
-
(1965)
Algebra
-
-
Lang, S.1
-
15
-
-
0000418297
-
Representations of complex semi-simple lie groups and lie algebras
-
Parthasarathy K.R., Ranga Rao R., Varadarajan V.S., Representations of complex semi-simple lie groups and lie algebras, Ann. of Math. 85 (1967) 383-429.
-
(1967)
Ann. of Math.
, vol.85
, pp. 383-429
-
-
Parthasarathy, K.R.1
Ranga Rao, R.2
Varadarajan, V.S.3
|