메뉴 건너뛰기




Volumn 63, Issue 2, 2001, Pages 022104-022101

Multiparty multilevel Greenberger-Horne-Zeilinger states

Author keywords

[No Author keywords available]

Indexed keywords

EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; TENSORS;

EID: 0035251254     PISSN: 10502947     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevA.63.022104     Document Type: Article
Times cited : (47)

References (18)
  • 4
    • 70350377232 scopus 로고
    • N. D. Mermin, Phys. Today 43 (6), 9 (1990); Am. J. Phys. 58, 731 (1990).
    • (1990) Phys. Today , vol.43 , Issue.6 , pp. 9
    • Mermin, N.D.1
  • 5
    • 84953681435 scopus 로고
    • N. D. Mermin, Phys. Today 43 (6), 9 (1990); Am. J. Phys. 58, 731 (1990).
    • (1990) Am. J. Phys. , vol.58 , pp. 731
  • 15
    • 14344276064 scopus 로고    scopus 로고
    • note
    • We can develop similar GHZ-like arguments starting from one-particle maximal operators with different eigenvalues other than those chosen in this paper, or even starting from nonmaximal operators. However, the choice in this paper (maximal operators with eigenvalues from -s to s) leads to a natural generalization of the original GHZ proof with spin-1/2 systems. It was recently proved that, for three spin-s particles, any one-particle operator can always be reduced to a direct sum of two two-level anticommuting one-particle operators (J. Savinien, J. Taron, and R. Tarrach, e-print quant-ph/0007069).
  • 16
    • 0000153017 scopus 로고
    • N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990); Rev. Mod. Phys. 65, 803 (1993).
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 3373
    • Mermin, N.D.1
  • 17
    • 34250618244 scopus 로고
    • N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990); Rev. Mod. Phys. 65, 803 (1993).
    • (1993) Rev. Mod. Phys. , vol.65 , pp. 803
  • 18
    • 14344279197 scopus 로고    scopus 로고
    • note
    • A similar set of requirements for a GHZ-like contradiction in the case of n spin-1/2 particles is proposed in Ref. [7].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.