메뉴 건너뛰기




Volumn 253, Issue 1, 2001, Pages 126-141

Nonlinear Galilei-Invariant PDEs with Infinite-Dimensional Lie Symmetry

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0035217611     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.2000.7067     Document Type: Article
Times cited : (8)

References (18)
  • 1
    • 0000596443 scopus 로고    scopus 로고
    • All solutions of standard symmetric linear partial differential equations have classical Lie symmetry
    • Broadbridge P., Arrigo D. J. All solutions of standard symmetric linear partial differential equations have classical Lie symmetry. J. Math. Anal. Appl. 234:1999;109-122.
    • (1999) J. Math. Anal. Appl. , vol.234 , pp. 109-122
    • Broadbridge, P.1    Arrigo, D.J.2
  • 8
    • 0007087301 scopus 로고
    • The Galilean relativistic principle and nonlinear partial differential equations
    • Fushchych W., Cherniha R. The Galilean relativistic principle and nonlinear partial differential equations. J. Phys. A. 18:1985;3491-3503.
    • (1985) J. Phys. A , vol.18 , pp. 3491-3503
    • Fushchych, W.1    Cherniha, R.2
  • 9
    • 0001395286 scopus 로고
    • Galilei-invariant nonlinear equations of Schrödinger-type and their exact solutions I, II
    • Fushchych W., Cherniha R. Galilei-invariant nonlinear equations of Schrödinger-type and their exact solutions I, II. Ukrainian Math. J. 41:1989;1161-1167.
    • (1989) Ukrainian Math. J. , vol.41 , pp. 1161-1167
    • Fushchych, W.1    Cherniha, R.2
  • 10
    • 0000924529 scopus 로고
    • Über Integration durch bestimente Integrale von einer Klasse lineare partiellen Differentialgleichungen
    • Lie S. Über Integration durch bestimente Integrale von einer Klasse lineare partiellen Differentialgleichungen. Arch. Math. 6:1881;328-368.
    • (1881) Arch. Math. , vol.6 , pp. 328-368
    • Lie, S.1
  • 12
    • 0001864440 scopus 로고
    • Two-dimensional nonlinear equations that are invariant under the Galilei algebra
    • Kyiv: Ukrainian Acad. Sci.Institute of Mathematics. p. 107-114
    • Cherniha R. Two-dimensional nonlinear equations that are invariant under the Galilei algebra. Group-Theoretical Investigations of Equations of Mathematical Physics. 1985;Ukrainian Acad. Sci.Institute of Mathematics, Kyiv. p. 107-114.
    • (1985) Group-Theoretical Investigations of Equations of Mathematical Physics
    • Cherniha, R.1
  • 13
    • 22444454375 scopus 로고    scopus 로고
    • Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection term
    • Cherniha R. M., Serov M. I. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection term. European J. Appl. Math. 9:1998;527-542.
    • (1998) European J. Appl. Math. , vol.9 , pp. 527-542
    • Cherniha, R.M.1    Serov, M.I.2
  • 15
    • 0001072629 scopus 로고
    • Waiting-time solutions of a nonlinear diffusion equation
    • Lacey A. A., Ockendon J. R., Tayler A. B. Waiting-time solutions of a nonlinear diffusion equation. SIAM J. Appl. Math. 42:1982;1252-1264.
    • (1982) SIAM J. Appl. Math. , vol.42 , pp. 1252-1264
    • Lacey, A.A.1    Ockendon, J.R.2    Tayler, A.B.3
  • 17
    • 0007093128 scopus 로고    scopus 로고
    • Conditional and Lie symmetries for two classes of nonlinear second-order evolution equations
    • Cherniha N. D. Conditional and Lie symmetries for two classes of nonlinear second-order evolution equations. Dopov. Akad. Nauk Ukrainy (Proc. Ukr. Acad. Sci.). 9:1996;54-58.
    • (1996) Dopov. Akad. Nauk Ukrainy (Proc. Ukr. Acad. Sci.) , vol.9 , pp. 54-58
    • Cherniha, N.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.