-
1
-
-
0021758053
-
The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam
-
Bennouna M.M., White R.G. The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam. J Sound Vibr. 96(3):1984;309-331.
-
(1984)
J Sound Vibr
, vol.96
, Issue.3
, pp. 309-331
-
-
Bennouna, M.M.1
White, R.G.2
-
2
-
-
0026419989
-
The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part I: Simply supported and clamped-clamped beams
-
Benamar R., Bennouna M.M., White R.G. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part I: simply supported and clamped-clamped beams. J Sound Vibr. 149(2):1991;179-195.
-
(1991)
J Sound Vibr
, vol.149
, Issue.2
, pp. 179-195
-
-
Benamar, R.1
Bennouna, M.M.2
White, R.G.3
-
3
-
-
0000334285
-
Non-linear vibration of beams with internal resonance by the hierarchical finite element method
-
Ribeiro P., Petyt M. Non-linear vibration of beams with internal resonance by the hierarchical finite element method. J Sound Vibr. 224(4):1999;591-624.
-
(1999)
J Sound Vibr
, vol.224
, Issue.4
, pp. 591-624
-
-
Ribeiro, P.1
Petyt, M.2
-
4
-
-
0022421533
-
A finite element method for non-linear forced vibrations of beams
-
Mei C., Decha-Umphai K. A finite element method for non-linear forced vibrations of beams. J Sound Vibr. 102(3):1985;369-380.
-
(1985)
J Sound Vibr
, vol.102
, Issue.3
, pp. 369-380
-
-
Mei, C.1
Decha-Umphai, K.2
-
5
-
-
0021375194
-
Ritz finite element approach to non-linear vibrations of beams
-
Sarma B.S., Varadan T.K. Ritz finite element approach to non-linear vibrations of beams. Int J Num Meth Engng. 20:1984;353-367.
-
(1984)
Int J Num Meth Engng
, vol.20
, pp. 353-367
-
-
Sarma, B.S.1
Varadan, T.K.2
-
6
-
-
0028400437
-
Non-linear free vibrations of beams by the finite element and continuation methods
-
Lewandowski R. Non-linear free vibrations of beams by the finite element and continuation methods. J Sound Vibr. 170(5):1994;577-593.
-
(1994)
J Sound Vibr
, vol.170
, Issue.5
, pp. 577-593
-
-
Lewandowski, R.1
-
7
-
-
0031142628
-
Computational formulation for periodic vibration of geometrically non-linear structures, Part 1: Theoretical background
-
Lewandowski R. Computational formulation for periodic vibration of geometrically non-linear structures, Part 1: theoretical background. Int J Solids Struct 1997;34(15):1925-47.
-
(1997)
Int J Solids Struct
, vol.34
, Issue.15
, pp. 1925-1947
-
-
Lewandowski, R.1
-
8
-
-
0031139750
-
Computational formulation for periodic vibration of geometrically nonlinear structures, Part 2: Numerical strategy and examples
-
Lewandowski R. Computational formulation for periodic vibration of geometrically nonlinear structures, Part 2: numerical strategy and examples. Int J Solids Struct 1997;34(15):1949-64.
-
(1997)
Int J Solids Struct
, vol.34
, Issue.15
, pp. 1949-1964
-
-
Lewandowski, R.1
-
9
-
-
0030572268
-
A finite element time domain modal formulation for large amplitude free vibration of beams and plates
-
Shi Y., Mei C. A finite element time domain modal formulation for large amplitude free vibration of beams and plates. J Sound Vibr. 193(2):1996;453-464.
-
(1996)
J Sound Vibr
, vol.193
, Issue.2
, pp. 453-464
-
-
Shi, Y.1
Mei, C.2
|