메뉴 건너뛰기




Volumn 12, Issue 1, 2001, Pages 43-53

A hybrid learning scheme combining EM and MASMOD algorithms for fuzzy local linearization modeling

Author keywords

Adaptive spline modeling; Expectation maximization (EM) algorithm; Fuzzy local linearization (FLL); Nonlinear system modeling; Nonlinear trajectory estimation; Time series analysis

Indexed keywords

ADAPTIVE SYSTEMS; ALGORITHMS; ESTIMATION; FUZZY SETS; LINEARIZATION; MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 0035112212     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.896795     Document Type: Article
Times cited : (15)

References (23)
  • 1
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 2
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference systems," IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-685, 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 3
    • 50649125497 scopus 로고
    • Constructing NARMAX models using ARMAX models
    • T. A. Johansen and B. A. Foss, "Constructing NARMAX models using ARMAX models,"Int. J. Contr., vol. 58, pp. 1125-1153, 1993.
    • (1993) Int. J. Contr. , vol.58 , pp. 1125-1153
    • Johansen, T.A.1    Foss, B.A.2
  • 4
    • 0032098032 scopus 로고    scopus 로고
    • An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces
    • C. K. Chak, G. Feng, and J. Ma, "An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces," IEEE Trans. Syst., Man, Cybern., vol. 28, pp. 436-446, 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.28 , pp. 436-446
    • Chak, C.K.1    Feng, G.2    Ma, J.3
  • 5
    • 0030130094 scopus 로고    scopus 로고
    • Modeling and control of nonlinear, operating point dependent systems via associative memory networks
    • H. Wang, M. Brown, and C. J. Harris, "Modeling and control of nonlinear, operating point dependent systems via associative memory networks," J. Dyn. Contr., vol. 6, pp. 199-218, 1996.
    • (1996) J. Dyn. Contr. , vol.6 , pp. 199-218
    • Wang, H.1    Brown, M.2    Harris, C.J.3
  • 6
    • 0031123010 scopus 로고    scopus 로고
    • A neurofuzzy network structure for modeling and state estimation of unknown nonlinear systems
    • Z. Q. Wu and C. J. Harris, "A neurofuzzy network structure for modeling and state estimation of unknown nonlinear systems," Int. J. Syst. Sci., vol. 28, pp. 335-345, 1997.
    • (1997) Int. J. Syst. Sci. , vol.28 , pp. 335-345
    • Wu, Z.Q.1    Harris, C.J.2
  • 8
    • 0033177739 scopus 로고    scopus 로고
    • Fuzzy local linearization and local basis function expansion in nonlinear system modeling
    • Q. Gan and C. J. Harris, "Fuzzy local linearization and local basis function expansion in nonlinear system modeling," IEEE Trans. Syst., Man, Cybern., pt. B, vol. 29, no. 4, pp. 559-565, 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. , vol.29 , Issue.4 PART B , pp. 559-565
    • Gan, Q.1    Harris, C.J.2
  • 9
    • 0005003549 scopus 로고    scopus 로고
    • Neurofuzzy state estimators using a modified ASMOD and Kalman filter algorithm
    • Vienna, Austria, Feb.
    • _, "Neurofuzzy state estimators using a modified ASMOD and Kalman filter algorithm," in Proc. Int. Conf. Comput. Intell. Modeling Contr. Automat., vol. 1, Vienna, Austria, Feb. 1999, pp. 214-219.
    • (1999) Proc. Int. Conf. Comput. Intell. Modeling Contr. Automat. , vol.1 , pp. 214-219
  • 10
    • 0033280682 scopus 로고    scopus 로고
    • Linearization and state estimation of unknown discrete-time nonlinear dynamic systems using recurrent neurofuzzy networks
    • _, "Linearization and state estimation of unknown discrete-time nonlinear dynamic systems using recurrent neurofuzzy networks," IEEE Trans. Syst., Man, Cybern., pt. B, vol. 29, pp. 802-817, 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. , vol.29 , Issue.PART B , pp. 802-817
  • 11
    • 33748125451 scopus 로고    scopus 로고
    • Optimal piecewise locally linear modeling and identification
    • C. J. Harris, H. Xia, and M. Feng, "Optimal piecewise locally linear modeling and identification," presented at the Proc. SPIE AeroSense'99.
    • Proc. SPIE AeroSense'99
    • Harris, C.J.1    Xia, H.2    Feng, M.3
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm (with discussions)," J. Roy. Statist Soc. B, vol. 39, pp. 1-39, 1977.
    • (1977) J. Roy. Statist Soc. B , vol.39 , pp. 1-39
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M. I. Jordan and R. A. Jacobs, "Hierarchical mixtures of experts and the EM algorithm," Neural Comput., vol. 6, pp. 181-214, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 15
    • 0029617280 scopus 로고
    • Convergence results for the EM approach to mixtures of experts architectures
    • M. I. Jordan and L. Xu, "Convergence results for the EM approach to mixtures of experts architectures," Neural Networks, vol. 8, no. 9, pp. 1409-1431, 1995.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1409-1431
    • Jordan, M.I.1    Xu, L.2
  • 16
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • L. Xu and M. I. Jordan, "On convergence properties of the EM algorithm for Gaussian mixtures," Neural Comput., vol. 8, pp. 129-151, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 17
    • 0033611505 scopus 로고    scopus 로고
    • Cluster-weighted modeling for time-series analysis
    • Jan. 28
    • N. Gershenfeld, B. Schoner, and E. Metois, "Cluster-weighted modeling for time-series analysis," Nature, vol. 397, pp. 329-332, Jan. 28, 1999.
    • (1999) Nature , vol.397 , pp. 329-332
    • Gershenfeld, N.1    Schoner, B.2    Metois, E.3
  • 18
    • 84947630316 scopus 로고
    • ASMOD - An algorithm for adaptive spline modeling of observation data
    • T. Kavli, "ASMOD - An algorithm for adaptive spline modeling of observation data," Int. J. Contr., vol. 58, no. 4, pp. 947-967, 1993.
    • (1993) Int. J. Contr. , vol.58 , Issue.4 , pp. 947-967
    • Kavli, T.1
  • 19
    • 0031484203 scopus 로고    scopus 로고
    • Polynomial splines and their tensor products in extended linear modeling
    • C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong, "Polynomial splines and their tensor products in extended linear modeling (with discussions)," Ann. Statist., vol. 25, no. 4, pp. 1371-1470, 1997.
    • (1997) Ann. Statist. , vol.25 , Issue.4 , pp. 1371-1470
    • Stone, C.J.1    Hansen, M.H.2    Kooperberg, C.3    Truong, Y.K.4
  • 20
    • 0000257826 scopus 로고
    • A neo fuzzy neuron and its applications to system identification and prediction of the system behavior
    • Japan
    • T. Yamakawa, E. Uchino, T. Miki, and H. Kusanagi, "A neo fuzzy neuron and its applications to system identification and prediction of the system behavior," in Proc. 2nd Int. Conf. Fuzzy Logic Neural Networks, Japan, 1992, pp. 477-483.
    • (1992) Proc. 2nd Int. Conf. Fuzzy Logic Neural Networks , pp. 477-483
    • Yamakawa, T.1    Uchino, E.2    Miki, T.3    Kusanagi, H.4
  • 21
    • 0004550048 scopus 로고
    • A neofuzzy neuron and its application to system identification and prediction of chaotic behavior
    • J. Zurada, R. Marks II, and C. Robinson, Eds: IEEE Press
    • T. Yamakawa, "A neofuzzy neuron and its application to system identification and prediction of chaotic behavior," in Computational Intelligence: Imitating Life, J. Zurada, R. Marks II, and C. Robinson, Eds: IEEE Press, 1994, pp. 383-395.
    • (1994) Computational Intelligence: Imitating Life , pp. 383-395
    • Yamakawa, T.1
  • 22
    • 33748124070 scopus 로고    scopus 로고
    • Volterra type neofuzzy neuron and its application to the modeling of nonlinear systems
    • India, Dec.
    • N. Suetake and T. Yamakawa, "Volterra type neofuzzy neuron and its application to the modeling of nonlinear systems," in Proc. Int. Conf. Math. Modeling Nonlinear Syst., vol. 1, India, Dec. 1999, pp. 245-248.
    • (1999) Proc. Int. Conf. Math. Modeling Nonlinear Syst. , vol.1 , pp. 245-248
    • Suetake, N.1    Yamakawa, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.