메뉴 건너뛰기




Volumn 22, Issue 2, 2001, Pages 656-672

Compact central WENO schemes for multidimensional conservation laws

Author keywords

Central difference schemes; CWENO reconstruction; High order accuracy; Hyperbolic systems; Nonoscillatory schemes; WENO reconstruction

Indexed keywords

FINITE DIFFERENCE METHOD; INTERPOLATION; NUMERICAL ANALYSIS; PIECEWISE LINEAR TECHNIQUES; POLYNOMIALS; PROBLEM SOLVING;

EID: 0035075926     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/S1064827599359461     Document Type: Article
Times cited : (336)

References (26)
  • 10
    • 2442433925 scopus 로고
    • Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method
    • (1979) J. Comput. Phys. , vol.32 , pp. 101-136
    • Van Leer, B.1
  • 11
    • 0003671760 scopus 로고
    • Numerical methods for conservation laws
    • Lectures in Mathematics ETH Zürich, Birkhauser-Verlag, Basel, Switzerland
    • (1992) 2nd Ed.
    • LeVeque, R.J.1
  • 16
    • 85031598160 scopus 로고    scopus 로고
    • Central weno schemes for multi-dimensional hyperbolic systems of conservation laws
    • in preparation
    • Levy, D.1    Puppo, G.2    Russo, G.3
  • 24
    • 2942705023 scopus 로고
    • A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
    • (1978) J. Comput. Phys. , vol.22 , pp. 1-31
    • Sod, G.1
  • 26
    • 84966233444 scopus 로고
    • Natural continuous extensions of Runge-Kutta methods
    • (1986) Math. Comp. , vol.46 , pp. 119-133
    • Zennaro, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.