메뉴 건너뛰기




Volumn 22, Issue 2, 2001, Pages 535-560

Modeling microstructure evolution using gradient-weighted moving finite elements

Author keywords

Changing grid topology; Deforming grids; Front tracking; Gradient weighted moving finite elements; Microstructure evolution; Motion by mean curvature; Unstructured tetrahedral meshes

Indexed keywords

COMPUTER SIMULATION; EQUATIONS OF MOTION; FINITE ELEMENT METHOD; GRAIN BOUNDARIES; PIECEWISE LINEAR TECHNIQUES; SURFACE TENSION; THREE DIMENSIONAL;

EID: 0035070819     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/S1064827598348374     Document Type: Article
Times cited : (40)

References (25)
  • 1
    • 0004220785 scopus 로고
    • Moving finite elements
    • Oxford University Press, London
    • (1994)
    • Baines, M.J.1
  • 7
    • 85160646546 scopus 로고    scopus 로고
    • Modeling metallic microstructure: Incorporating grain boundary orientation dependence
    • in the Special Features Supplement to the Theoretical Division Self-Assessment, Los Alamos National Laboratory, Los Alamos, NM, Spring
    • (1998) Tech. Report LA-UR-98-1150
    • Gammel, J.T.1    Kuprat, A.2
  • 10
    • 0003453994 scopus 로고
    • Creation and annihilation of nodes for the moving finite element method
    • Ph.D. thesis, University of California, Berkeley, May
    • (1992)
    • Kuprat, A.1
  • 11
    • 0000714820 scopus 로고
    • Relationship between tetrahedron shape measures
    • (1994) BIT , vol.34 , pp. 268-287
    • Liu, A.1    Joe, B.2
  • 15
  • 18
    • 0005503701 scopus 로고
    • Rotational surfaces in euclidean and hyperbolic spaces, mean curvature motion, and the moving finite element method
    • Ph.D. thesis, Department of Mathematics, University of California, Berkeley
    • (1993)
    • Nazari, S.1
  • 23
    • 0003661003 scopus 로고    scopus 로고
    • Level set methods
    • Cambridge University Press, London
    • (1996)
    • Sethian, J.A.1
  • 24
    • 0003749959 scopus 로고    scopus 로고
    • Robust iterative solvers for linear and nonlinear finite element equations
    • Ph.D. thesis, Department of Mathematics, University of California, Berkeley
    • (1997)
    • Xaba, E.Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.