-
3
-
-
0000448974
-
-
V I. Merkulov, J S. Lannin, C H. Munro, S A. Asher, V S. Veerasamy, and W I. Milne, Phys. Rev. Lett.78, 4869 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 4869
-
-
Merkulov, V.I.1
Lannin, J.S.2
Munro, C.H.3
Asher, S.A.4
Veerasamy, V.S.5
Milne, W.I.6
-
4
-
-
0000424795
-
-
K W R. Gilkes, H S. Sands, D N. Batchelder, J. Robertson, and W I. Milne, Appl. Phys. Lett.70, 1980 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 1980
-
-
Gilkes, K.W.R.1
Sands, H.S.2
Batchelder, D.N.3
Robertson, J.4
Milne, W.I.5
-
6
-
-
85038277752
-
-
Here and in the following we will use atomic units, with which (formula presented)
-
Here and in the following we will use atomic units, with which (formula presented).
-
-
-
-
7
-
-
0000088041
-
-
E. Marx, Akademische Verlagsgesellschaft, Leipzig, in, edited by, p
-
G. Placzek, in Handbuch der Radiologie, edited by E. Marx (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. 6, p. 209.
-
(1934)
Handbuch der Radiologie
, vol.6
, pp. 209
-
-
Placzek, G.1
-
10
-
-
0001144762
-
-
P V. Santos, N. Esser, M. Cardona, W G. Schmidt, and F. Bechstedt, Phys. Rev. B52, 12 158 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 12 158
-
-
Santos, P.V.1
Esser, N.2
Cardona, M.3
Schmidt, W.G.4
Bechstedt, F.5
-
11
-
-
0003444152
-
-
Clarendon Press and Oxford University Press, New York
-
R. Loudon, The Quantum Theory of Light (Clarendon Press and Oxford University Press, New York, 1983).
-
(1983)
The Quantum Theory of Light
-
-
Loudon, R.1
-
14
-
-
0001376369
-
-
N. Marks, D R. McKenzie, B A. Pailthorpe, M. Bernasconi, et al., Phys. Rev. B54, 9703 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 9703
-
-
Marks, N.1
McKenzie, D.R.2
Pailthorpe, B.A.3
Bernasconi, M.4
-
15
-
-
85038279689
-
-
CPMD Version 3.3.5 (MPI für Festkörperforschung and IBM Research Laboratory, 1990–1998)
-
J. Hutter, P. Ballone, M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M. Parinello, and M. Tuckerman, CPMD Version 3.3.5 (MPI für Festkörperforschung and IBM Research Laboratory, 1990–1998).
-
-
-
Hutter, J.1
Ballone, P.2
Bernasconi, M.3
Focher, P.4
Fois, E.5
Goedecker, S.6
Marx, D.7
Parinello, M.8
Tuckerman, M.9
-
17
-
-
1542624160
-
-
C H. Xu, C Z. Wang, C T. Chan, and K M. Ho, J. Phys.: Condens. Matter4, 6047 (1992).
-
(1992)
J. Phys.: Condens. Matter
, vol.4
, pp. 6047
-
-
Xu, C.H.1
Wang, C.Z.2
Chan, C.T.3
Ho, K.M.4
-
19
-
-
85038346417
-
-
To perform the projection we have defined for each bond a ‘stretching’ vector in the space of the (formula presented) displacements. The components of each vector involve the displacement of two atoms in the direction of the bond and with opposite orientations. We use these vectors as a (non-orthonormal) basis of the stretching subspace. We define the bending subspace as the complement of the stretching subspace
-
To perform the projection we have defined for each bond a ‘stretching’ vector in the space of the (formula presented) displacements. The components of each vector involve the displacement of two atoms in the direction of the bond and with opposite orientations. We use these vectors as a (non-orthonormal) basis of the stretching subspace. We define the bending subspace as the complement of the stretching subspace.
-
-
-
-
22
-
-
85038270529
-
-
In the expression of intensity, Eq. (12), (formula presented) where the contributions (formula presented) and (formula presented) are obtained substituting in Eq. (14) the vibrational eigenvector (formula presented) with its projections in the stretching and bending subspaces, respectively. The intensity is then proportional to (formula presented). The first two terms correspond to the contributions of stretching and bending modes, respectively, whereas the last term corresponds to the overlap term. A similar repartition is used to define the (formula presented) and (formula presented) contributions
-
In the expression of intensity, Eq. (12), (formula presented) where the contributions (formula presented) and (formula presented) are obtained substituting in Eq. (14) the vibrational eigenvector (formula presented) with its projections in the stretching and bending subspaces, respectively. The intensity is then proportional to (formula presented). The first two terms correspond to the contributions of stretching and bending modes, respectively, whereas the last term corresponds to the overlap term. A similar repartition is used to define the (formula presented) and (formula presented) contributions.
-
-
-
|