메뉴 건너뛰기




Volumn 287, Issue 5462, 2000, Pages 2456-2460

Dynamic variations at the base of the solar convection zone

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ASTRONOMY; MAGNETIC FIELD; OSCILLATION; POWER SPECTRUM; PRIORITY JOURNAL; ROTATION; SUN; THERMODYNAMICS; VELOCITY;

EID: 0034737746     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.287.5462.2456     Document Type: Article
Times cited : (422)

References (48)
  • 1
    • 12044253963 scopus 로고
    • The 22-year solar cycles of global magnetic activity might be described by an interface mean-field dynamo, operating in the tachocline, whose rotational shear can stretch the poloidal magnetic field generated by cyclonic turbulence in the convection zone into a strong toroidal field at its base [E. N. Parker, Astrophys. J. 408, 707 (1993); N. O. Weiss, in Lectures on Solar and Planetary Dynamos, M. R. E. Proctor and A. D. Gilbert, Eds. (Cambridge Univ. Press, Cambridge, 1994), pp. 59-95; S. M. Tobias, Astron. Astrophys. 322, 1007 (1997); P. Charbonneau and K. B. MacGregor, Astrophys. J. 486, 502 (1997)]. Such a toroidal field should be susceptible to buoyancy instabilities that lead to portions of the field rising through the convection zone and subsequently erupting into the atmosphere as large-scale magnetic loops [P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)].
    • (1993) Astrophys. J. , vol.408 , pp. 707
    • Parker, E.N.1
  • 2
    • 12044253963 scopus 로고
    • M. R. E. Proctor and A. D. Gilbert, Eds. Cambridge Univ. Press, Cambridge
    • The 22-year solar cycles of global magnetic activity might be described by an interface mean-field dynamo, operating in the tachocline, whose rotational shear can stretch the poloidal magnetic field generated by cyclonic turbulence in the convection zone into a strong toroidal field at its base [E. N. Parker, Astrophys. J. 408, 707 (1993); N. O. Weiss, in Lectures on Solar and Planetary Dynamos, M. R. E. Proctor and A. D. Gilbert, Eds. (Cambridge Univ. Press, Cambridge, 1994), pp. 59-95; S. M. Tobias, Astron. Astrophys. 322, 1007 (1997); P. Charbonneau and K. B. MacGregor, Astrophys. J. 486, 502 (1997)]. Such a toroidal field should be susceptible to buoyancy instabilities that lead to portions of the field rising through the convection zone and subsequently erupting into the atmosphere as large-scale magnetic loops [P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)].
    • (1994) Lectures on Solar and Planetary Dynamos , pp. 59-95
    • Weiss, N.O.1
  • 3
    • 3342949554 scopus 로고    scopus 로고
    • The 22-year solar cycles of global magnetic activity might be described by an interface mean-field dynamo, operating in the tachocline, whose rotational shear can stretch the poloidal magnetic field generated by cyclonic turbulence in the convection zone into a strong toroidal field at its base [E. N. Parker, Astrophys. J. 408, 707 (1993); N. O. Weiss, in Lectures on Solar and Planetary Dynamos, M. R. E. Proctor and A. D. Gilbert, Eds. (Cambridge Univ. Press, Cambridge, 1994), pp. 59-95; S. M. Tobias, Astron. Astrophys. 322, 1007 (1997); P. Charbonneau and K. B. MacGregor, Astrophys. J. 486, 502 (1997)]. Such a toroidal field should be susceptible to buoyancy instabilities that lead to portions of the field rising through the convection zone and subsequently erupting into the atmosphere as large-scale magnetic loops [P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)].
    • (1997) Astron. Astrophys. , vol.322 , pp. 1007
    • Tobias, S.M.1
  • 4
    • 25344455092 scopus 로고    scopus 로고
    • The 22-year solar cycles of global magnetic activity might be described by an interface mean-field dynamo, operating in the tachocline, whose rotational shear can stretch the poloidal magnetic field generated by cyclonic turbulence in the convection zone into a strong toroidal field at its base [E. N. Parker, Astrophys. J. 408, 707 (1993); N. O. Weiss, in Lectures on Solar and Planetary Dynamos, M. R. E. Proctor and A. D. Gilbert, Eds. (Cambridge Univ. Press, Cambridge, 1994), pp. 59-95; S. M. Tobias, Astron. Astrophys. 322, 1007 (1997); P. Charbonneau and K. B. MacGregor, Astrophys. J. 486, 502 (1997)]. Such a toroidal field should be susceptible to buoyancy instabilities that lead to portions of the field rising through the convection zone and subsequently erupting into the atmosphere as large-scale magnetic loops [P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)].
    • (1997) Astrophys. J. , vol.486 , pp. 502
    • Charbonneau, P.1    MacGregor, K.B.2
  • 5
    • 11944264795 scopus 로고
    • The 22-year solar cycles of global magnetic activity might be described by an interface mean-field dynamo, operating in the tachocline, whose rotational shear can stretch the poloidal magnetic field generated by cyclonic turbulence in the convection zone into a strong toroidal field at its base [E. N. Parker, Astrophys. J. 408, 707 (1993); N. O. Weiss, in Lectures on Solar and Planetary Dynamos, M. R. E. Proctor and A. D. Gilbert, Eds. (Cambridge Univ. Press, Cambridge, 1994), pp. 59-95; S. M. Tobias, Astron. Astrophys. 322, 1007 (1997); P. Charbonneau and K. B. MacGregor, Astrophys. J. 486, 502 (1997)]. Such a toroidal field should be susceptible to buoyancy instabilities that lead to portions of the field rising through the convection zone and subsequently erupting into the atmosphere as large-scale magnetic loops [P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)].
    • (1995) Astrophys. J. , vol.441 , pp. 886
    • Caligari, P.1    Moreno-Insertis, F.2    Schüssler, M.3
  • 6
    • 0022211446 scopus 로고    scopus 로고
    • For general reviews on helioseismology, see work by J. Christensen-Dalsgaard, D. Gough, J. Toomre, Science 229, 923 (1985); D. O. Gough and J. Toomre, Annu. Rev. Astron. Astrophys. 29, 627 (1991); and J. Christensen-Dalsgaard, W. Däppen, W. A. Dziembowski, J. A. Guzik, in Variable Stars as Essential Astrophysical Tools, C. Ibanoǧlu, Ed. (Kluwer, Dordrecht, Netherlands, 2000), pp. 59-167. A mode of oscillation is characterized by the degree l and azimuthal order m of the spherical harmonic, which describes its behavior over the solar surface, and the radial order n, which typically measures the number of nodes in the displacement eigen-function in the radial direction. The modes observed on the sun are typically acoustic modes (pressure or p modes), although in the MDI data, surface gravity modes (f modes) are also observed at high degree.
    • (1985) Science , vol.229 , pp. 923
    • Christensen-Dalsgaard, J.1    Gough, D.2    Toomre, J.3
  • 7
    • 0000656829 scopus 로고
    • For general reviews on helioseismology, see work by J. Christensen-Dalsgaard, D. Gough, J. Toomre, Science 229, 923 (1985); D. O. Gough and J. Toomre, Annu. Rev. Astron. Astrophys. 29, 627 (1991); and J. Christensen-Dalsgaard, W. Däppen, W. A. Dziembowski, J. A. Guzik, in Variable Stars as Essential Astrophysical Tools, C. Ibanoǧlu, Ed. (Kluwer, Dordrecht, Netherlands, 2000), pp. 59-167. A mode of oscillation is characterized by the degree l and azimuthal order m of the spherical harmonic, which describes its behavior over the solar surface, and the radial order n, which typically measures the number of nodes in the displacement eigen-function in the radial direction. The modes observed on the sun are typically acoustic modes (pressure or p modes), although in the MDI data, surface gravity modes (f modes) are also observed at high degree.
    • (1991) Annu. Rev. Astron. Astrophys. , vol.29 , pp. 627
    • Gough, D.O.1    Toomre, J.2
  • 8
    • 0022211446 scopus 로고    scopus 로고
    • C. Ibanoǧlu, Ed. Kluwer, Dordrecht, Netherlands
    • For general reviews on helioseismology, see work by J. Christensen-Dalsgaard, D. Gough, J. Toomre, Science 229, 923 (1985); D. O. Gough and J. Toomre, Annu. Rev. Astron. Astrophys. 29, 627 (1991); and J. Christensen-Dalsgaard, W. Däppen, W. A. Dziembowski, J. A. Guzik, in Variable Stars as Essential Astrophysical Tools, C. Ibanoǧlu, Ed. (Kluwer, Dordrecht, Netherlands, 2000), pp. 59-167. A mode of oscillation is characterized by the degree l and azimuthal order m of the spherical harmonic, which describes its behavior over the solar surface, and the radial order n, which typically measures the number of nodes in the displacement eigen-function in the radial direction. The modes observed on the sun are typically acoustic modes (pressure or p modes), although in the MDI data, surface gravity modes (f modes) are also observed at high degree.
    • (2000) Variable Stars As Essential Astrophysical Tools , pp. 59-167
    • Christensen-Dalsgaard, J.1    Däppen, W.2    Dziembowski, W.A.3    Guzik, J.A.4
  • 9
    • 0029750499 scopus 로고    scopus 로고
    • Recent helioseismic results on solar rotation are presented by M. J. Thompson et al., Science 272, 1300 (1996); T. Corbard et al., Astron. Astrophys. 324, 298 (1997); and J. Schou et al. (16). The splitting of global-mode frequencies by rotation provides the means to sample only the latitudinally symmetric component of the variation of angular velocity Ω.
    • (1996) Science , vol.272 , pp. 1300
    • Thompson, M.J.1
  • 10
    • 0000486721 scopus 로고    scopus 로고
    • J. Schou et al. (16)
    • Recent helioseismic results on solar rotation are presented by M. J. Thompson et al., Science 272, 1300 (1996); T. Corbard et al., Astron. Astrophys. 324, 298 (1997); and J. Schou et al. (16). The splitting of global-mode frequencies by rotation provides the means to sample only the latitudinally symmetric component of the variation of angular velocity Ω.
    • (1997) Astron. Astrophys. , vol.324 , pp. 298
    • Corbard, T.1
  • 11
    • 0000482837 scopus 로고
    • The radial gradients of angular velocity Ω in the tachocline may arise from anisotropic turbulent mixing of angular momentum in the stably stratified boundary layer at the base of the convection zone. The much stronger transport in the latitudinal direction than in the radial direction serves to circumvent the diffusive spread of latitudinal differential rotation into the deeper interior over long time scales [E. A. Spiegel and J.-P. Zahn, Astron. Astrophys. 265, 106 (1992); J. R. Elliott, Astron. Astrophys. 327, 1222 (1997)]. Other models invoke magnetic fields to enforce solid-body rotation in the radiative interior [D. O. Gough and M. E. McIntyre, Nature 394, 755 (1998)]. Linear instability studies of latitudinal shear combined with toroidal magnetic fields [P. A. Gilman and P. A. Fox, Astrophys. J. 510, 1018 (1999); M. Dikpati and P. A. Gilman, Astrophys. J. 512, 417 (1999)] suggest mechanisms for achieving enhanced horizontal turbulent mixing in the tachocline.
    • (1992) Astron. Astrophys. , vol.265 , pp. 106
    • Spiegel, E.A.1    Zahn, J.-P.2
  • 12
    • 4043169978 scopus 로고    scopus 로고
    • The radial gradients of angular velocity Ω in the tachocline may arise from anisotropic turbulent mixing of angular momentum in the stably stratified boundary layer at the base of the convection zone. The much stronger transport in the latitudinal direction than in the radial direction serves to circumvent the diffusive spread of latitudinal differential rotation into the deeper interior over long time scales [E. A. Spiegel and J.-P. Zahn, Astron. Astrophys. 265, 106 (1992); J. R. Elliott, Astron. Astrophys. 327, 1222 (1997)]. Other models invoke magnetic fields to enforce solid-body rotation in the radiative interior [D. O. Gough and M. E. McIntyre, Nature 394, 755 (1998)]. Linear instability studies of latitudinal shear combined with toroidal magnetic fields [P. A. Gilman and P. A. Fox, Astrophys. J. 510, 1018 (1999); M. Dikpati and P. A. Gilman, Astrophys. J. 512, 417 (1999)] suggest mechanisms for achieving enhanced horizontal turbulent mixing in the tachocline.
    • (1997) Astron. Astrophys. , vol.327 , pp. 1222
    • Elliott, J.R.1
  • 13
    • 0032552079 scopus 로고    scopus 로고
    • The radial gradients of angular velocity Ω in the tachocline may arise from anisotropic turbulent mixing of angular momentum in the stably stratified boundary layer at the base of the convection zone. The much stronger transport in the latitudinal direction than in the radial direction serves to circumvent the diffusive spread of latitudinal differential rotation into the deeper interior over long time scales [E. A. Spiegel and J.-P. Zahn, Astron. Astrophys. 265, 106 (1992); J. R. Elliott, Astron. Astrophys. 327, 1222 (1997)]. Other models invoke magnetic fields to enforce solid-body rotation in the radiative interior [D. O. Gough and M. E. McIntyre, Nature 394, 755 (1998)]. Linear instability studies of latitudinal shear combined with toroidal magnetic fields [P. A. Gilman and P. A. Fox, Astrophys. J. 510, 1018 (1999); M. Dikpati and P. A. Gilman, Astrophys. J. 512, 417 (1999)] suggest mechanisms for achieving enhanced horizontal turbulent mixing in the tachocline.
    • (1998) Nature , vol.394 , pp. 755
    • Gough, D.O.1    McIntyre, M.E.2
  • 14
    • 0033540241 scopus 로고    scopus 로고
    • The radial gradients of angular velocity Ω in the tachocline may arise from anisotropic turbulent mixing of angular momentum in the stably stratified boundary layer at the base of the convection zone. The much stronger transport in the latitudinal direction than in the radial direction serves to circumvent the diffusive spread of latitudinal differential rotation into the deeper interior over long time scales [E. A. Spiegel and J.-P. Zahn, Astron. Astrophys. 265, 106 (1992); J. R. Elliott, Astron. Astrophys. 327, 1222 (1997)]. Other models invoke magnetic fields to enforce solid-body rotation in the radiative interior [D. O. Gough and M. E. McIntyre, Nature 394, 755 (1998)]. Linear instability studies of latitudinal shear combined with toroidal magnetic fields [P. A. Gilman and P. A. Fox, Astrophys. J. 510, 1018 (1999); M. Dikpati and P. A. Gilman, Astrophys. J. 512, 417 (1999)] suggest mechanisms for achieving enhanced horizontal turbulent mixing in the tachocline.
    • (1999) Astrophys. J. , vol.510 , pp. 1018
    • Gilman, P.A.1    Fox, P.A.2
  • 15
    • 0033540496 scopus 로고    scopus 로고
    • The radial gradients of angular velocity Ω in the tachocline may arise from anisotropic turbulent mixing of angular momentum in the stably stratified boundary layer at the base of the convection zone. The much stronger transport in the latitudinal direction than in the radial direction serves to circumvent the diffusive spread of latitudinal differential rotation into the deeper interior over long time scales [E. A. Spiegel and J.-P. Zahn, Astron. Astrophys. 265, 106 (1992); J. R. Elliott, Astron. Astrophys. 327, 1222 (1997)]. Other models invoke magnetic fields to enforce solid-body rotation in the radiative interior [D. O. Gough and M. E. McIntyre, Nature 394, 755 (1998)]. Linear instability studies of latitudinal shear combined with toroidal magnetic fields [P. A. Gilman and P. A. Fox, Astrophys. J. 510, 1018 (1999); M. Dikpati and P. A. Gilman, Astrophys. J. 512, 417 (1999)] suggest mechanisms for achieving enhanced horizontal turbulent mixing in the tachocline.
    • (1999) Astrophys. J. , vol.512 , pp. 417
    • Dikpati, M.1    Gilman, P.A.2
  • 16
    • 2542548666 scopus 로고    scopus 로고
    • The nearly adiabatic stratification of the convection zone has been determined to extend to a depth of 0.287R below the surface, using helioseismic data, with an uncertainty of 0.003R or better [J. Christensen-Dalsgaard, D. O. Gough, M. J. Thompson, Astrophys. J. 378, 413 (1991); S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997)]. The base of this zone at radius 0.713R may be contrasted to helioseismic estimates that place the midpoint of the tachocline at radius 0.692R, with a thickness estimated to be of the order of 0.02R to 0.09R [A. G. Kosovichev, Astrophys. J. 469, L61 (1996); T. Corbard, G. Berthomieu, J. Provost, P. Morel, Astron. Astrophys. 330, 1149 (1998); P. Charbonneau et al., Astrophys. J. 527, 445 (1999); (17)]. Thus, the tachocline is largely embedded in a region of very stable stratification.
    • (1991) Astrophys. J. , vol.378 , pp. 413
    • Christensen-Dalsgaard, J.1    Gough, D.O.2    Thompson, M.J.3
  • 17
    • 2542568562 scopus 로고    scopus 로고
    • The nearly adiabatic stratification of the convection zone has been determined to extend to a depth of 0.287R below the surface, using helioseismic data, with an uncertainty of 0.003R or better [J. Christensen-Dalsgaard, D. O. Gough, M. J. Thompson, Astrophys. J. 378, 413 (1991); S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997)]. The base of this zone at radius 0.713R may be contrasted to helioseismic estimates that place the midpoint of the tachocline at radius 0.692R, with a thickness estimated to be of the order of 0.02R to 0.09R [A. G. Kosovichev, Astrophys. J. 469, L61 (1996); T. Corbard, G. Berthomieu, J. Provost, P. Morel, Astron. Astrophys. 330, 1149 (1998); P. Charbonneau et al., Astrophys. J. 527, 445 (1999); (17)]. Thus, the tachocline is largely embedded in a region of very stable stratification.
    • (1997) Mon. Not. R. Astron. Soc. , vol.287 , pp. 189
    • Basu, S.1    Antia, H.M.2
  • 18
    • 0039674299 scopus 로고    scopus 로고
    • The nearly adiabatic stratification of the convection zone has been determined to extend to a depth of 0.287R below the surface, using helioseismic data, with an uncertainty of 0.003R or better [J. Christensen-Dalsgaard, D. O. Gough, M. J. Thompson, Astrophys. J. 378, 413 (1991); S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997)]. The base of this zone at radius 0.713R may be contrasted to helioseismic estimates that place the midpoint of the tachocline at radius 0.692R, with a thickness estimated to be of the order of 0.02R to 0.09R [A. G. Kosovichev, Astrophys. J. 469, L61 (1996); T. Corbard, G. Berthomieu, J. Provost, P. Morel, Astron. Astrophys. 330, 1149 (1998); P. Charbonneau et al., Astrophys. J. 527, 445 (1999); (17)]. Thus, the tachocline is largely embedded in a region of very stable stratification.
    • (1996) Astrophys. J. , vol.469
    • Kosovichev, A.G.1
  • 19
    • 2542548666 scopus 로고    scopus 로고
    • The nearly adiabatic stratification of the convection zone has been determined to extend to a depth of 0.287R below the surface, using helioseismic data, with an uncertainty of 0.003R or better [J. Christensen-Dalsgaard, D. O. Gough, M. J. Thompson, Astrophys. J. 378, 413 (1991); S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997)]. The base of this zone at radius 0.713R may be contrasted to helioseismic estimates that place the midpoint of the tachocline at radius 0.692R, with a thickness estimated to be of the order of 0.02R to 0.09R [A. G. Kosovichev, Astrophys. J. 469, L61 (1996); T. Corbard, G. Berthomieu, J. Provost, P. Morel, Astron. Astrophys. 330, 1149 (1998); P. Charbonneau et al., Astrophys. J. 527, 445 (1999); (17)]. Thus, the tachocline is largely embedded in a region of very stable stratification.
    • (1998) Astron. Astrophys. , vol.330 , pp. 1149
    • Corbard, T.1    Berthomieu, G.2    Provost, J.3    Morel, P.4
  • 20
    • 0000345552 scopus 로고    scopus 로고
    • 17
    • The nearly adiabatic stratification of the convection zone has been determined to extend to a depth of 0.287R below the surface, using helioseismic data, with an uncertainty of 0.003R or better [J. Christensen-Dalsgaard, D. O. Gough, M. J. Thompson, Astrophys. J. 378, 413 (1991); S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997)]. The base of this zone at radius 0.713R may be contrasted to helioseismic estimates that place the midpoint of the tachocline at radius 0.692R, with a thickness estimated to be of the order of 0.02R to 0.09R [A. G. Kosovichev, Astrophys. J. 469, L61 (1996); T. Corbard, G. Berthomieu, J. Provost, P. Morel, Astron. Astrophys. 330, 1149 (1998); P. Charbonneau et al., Astrophys. J. 527, 445 (1999); (17)]. Thus, the tachocline is largely embedded in a region of very stable stratification.
    • (1999) Astrophys. J. , vol.527 , pp. 445
    • Charbonneau, P.1
  • 21
    • 0029751637 scopus 로고    scopus 로고
    • The GONG project is described by J. W. Harvey et al. [Science 272, 1284 (1996)], and the Solar Oscillation Investigation (SOI), which utilizes the MDI instrument, is described by P. H. Scherrer et al., Sol. Phys. 162, 129 (1995).
    • (1996) Science , vol.272 , pp. 1284
    • Harvey, J.W.1
  • 22
    • 34249760904 scopus 로고
    • The GONG project is described by J. W. Harvey et al. [Science 272, 1284 (1996)], and the Solar Oscillation Investigation (SOI), which utilizes the MDI instrument, is described by P. H. Scherrer et al., Sol. Phys. 162, 129 (1995).
    • (1995) Sol. Phys. , vol.162 , pp. 129
    • Scherrer, P.H.1
  • 23
    • 0000791240 scopus 로고
    • 35, for ∼1800 multiplets with l ≤ 300. The GONG and MDI data analyses continue to be extended as new observational data become available.
    • (1991) Astrophys. J. , vol.369 , pp. 557
  • 24
    • 0012740345 scopus 로고
    • see also (16)
    • In the OLA inversion, linear combinations of the observations are formed such as to correspond to localized averages, in radius and latitude, of the angular velocity, while controlling the error in the inference [F. P. Pijpers and M. J. Thompson, Astron. Astrophys. 262, L33 (1992); see also (16)]. In the RLS technique, a parameterized representation of Ω is fitted to the observations in a least squares sense, including in the minimization of an integral of the square of the second derivative of Ω; this term suppresses the tendency for rapid variations in the solution and also, implicitly, limits the error (18). The methods are controlled by trade-off parameters that provide a balance between resolution and errors. In both cases, the inference can be represented as an average of the true solution, weighted by an averaging kernel whose extent provides a measure of the resolution. In addition to the error, it is also important to take into account the error correlation between the inferences at different locations in the sun [R. Howe and M. J. Thompson, Mon. Not. R. Astron. Soc. 281, 1385 (1996); D. O. Gough, T. Sekii, P. Stark, Astrophys. J. 459, 779 (1996)].
    • (1992) Astron. Astrophys. , vol.262
    • Pijpers, F.P.1    Thompson, M.J.2
  • 25
    • 0001450764 scopus 로고    scopus 로고
    • In the OLA inversion, linear combinations of the observations are formed such as to correspond to localized averages, in radius and latitude, of the angular velocity, while controlling the error in the inference [F. P. Pijpers and M. J. Thompson, Astron. Astrophys. 262, L33 (1992); see also (16)]. In the RLS technique, a parameterized representation of Ω is fitted to the observations in a least squares sense, including in the minimization of an integral of the square of the second derivative of Ω; this term suppresses the tendency for rapid variations in the solution and also, implicitly, limits the error (18). The methods are controlled by trade-off parameters that provide a balance between resolution and errors. In both cases, the inference can be represented as an average of the true solution, weighted by an averaging kernel whose extent provides a measure of the resolution. In addition to the error, it is also important to take into account the error correlation between the inferences at different locations in the sun [R. Howe and M. J. Thompson, Mon. Not. R. Astron. Soc. 281, 1385 (1996); D. O. Gough, T. Sekii, P. Stark, Astrophys. J. 459, 779 (1996)].
    • (1996) Mon. Not. R. Astron. Soc. , vol.281 , pp. 1385
    • Howe, R.1    Thompson, M.J.2
  • 26
    • 21344432524 scopus 로고    scopus 로고
    • In the OLA inversion, linear combinations of the observations are formed such as to correspond to localized averages, in radius and latitude, of the angular velocity, while controlling the error in the inference [F. P. Pijpers and M. J. Thompson, Astron. Astrophys. 262, L33 (1992); see also (16)]. In the RLS technique, a parameterized representation of Ω is fitted to the observations in a least squares sense, including in the minimization of an integral of the square of the second derivative of Ω; this term suppresses the tendency for rapid variations in the solution and also, implicitly, limits the error (18). The methods are controlled by trade-off parameters that provide a balance between resolution and errors. In both cases, the inference can be represented as an average of the true solution, weighted by an averaging kernel whose extent provides a measure of the resolution. In addition to the error, it is also important to take into account the error correlation between the inferences at different locations in the sun [R. Howe and M. J. Thompson, Mon. Not. R. Astron. Soc. 281, 1385 (1996); D. O. Gough, T. Sekii, P. Stark, Astrophys. J. 459, 779 (1996)].
    • (1996) Astrophys. J. , vol.459 , pp. 779
    • Gough, D.O.1    Sekii, T.2    Stark, P.3
  • 27
    • 0343033066 scopus 로고    scopus 로고
    • note
    • The agreement between OLA and RLS inversion methods can be assessed by examining the difference between OLA and RLS rotation residuals δΩ at a given location. As can be seen in Fig. 2, these are within 1σ in all but a few cases, and the root mean square of the difference to error ratio for each of the cases illustrated is less than unity.
  • 28
    • 0343904576 scopus 로고    scopus 로고
    • note
    • 2 for all combinations at this location is mostly due to the increase in amplitude later in the period, which is not well reproduced by a single sine wave.
  • 29
    • 0040499181 scopus 로고    scopus 로고
    • S. Korzennik and A. Wilson, Eds. ESA SP-418, European Space Agency, Noordwijk, Netherlands
    • Global simulations of turbulent compressible convection in full spherical shells to study the resulting differential rotation have been discussed by J. R. Elliott et al., in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 765-770; J. R. Elliott, M. S. Miesch, J. Toomre, Astrophys. J. 533, 548 (2000); and M. S. Miesch et al., Astrophys. J., 532, 593 (2000).
    • (1998) Structure and Dynamics of the Interior of the Sun and Sun-like Stars , pp. 765-770
    • Elliott, J.R.1
  • 30
    • 0011969494 scopus 로고    scopus 로고
    • Global simulations of turbulent compressible convection in full spherical shells to study the resulting differential rotation have been discussed by J. R. Elliott et al., in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 765-770; J. R. Elliott, M. S. Miesch, J. Toomre, Astrophys. J. 533, 548 (2000); and M. S. Miesch et al., Astrophys. J., 532, 593 (2000).
    • (2000) Astrophys. J. , vol.533 , pp. 548
    • Elliott, J.R.1    Miesch, M.S.2    Toomre, J.3
  • 31
    • 0034688834 scopus 로고    scopus 로고
    • Global simulations of turbulent compressible convection in full spherical shells to study the resulting differential rotation have been discussed by J. R. Elliott et al., in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 765-770; J. R. Elliott, M. S. Miesch, J. Toomre, Astrophys. J. 533, 548 (2000); and M. S. Miesch et al., Astrophys. J., 532, 593 (2000).
    • (2000) Astrophys. J. , vol.532 , pp. 593
    • Miesch, M.S.1
  • 32
    • 0039906243 scopus 로고    scopus 로고
    • F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. Kluwer, Dordrecht, Netherlands
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • (1998) Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars , pp. 199-212
    • Schou, J.1
  • 33
    • 0033438647 scopus 로고    scopus 로고
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • (1999) Astrophys. J. , vol.523
    • Schou, J.1
  • 34
    • 0040499182 scopus 로고    scopus 로고
    • in press
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • Sol. Phys.
    • Howe, R.1    Komm, R.W.2    Hill, F.3
  • 35
    • 4243279164 scopus 로고    scopus 로고
    • in press
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • Astrophys J.
    • Howe, R.1
  • 36
    • 0342598818 scopus 로고    scopus 로고
    • in press
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • Sol. Phys.
    • Toomre, J.1
  • 37
    • 0002418959 scopus 로고
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • (1980) Astrophys. J. , vol.239
    • Howard, R.1    LaBonte, B.J.2
  • 38
    • 0041093296 scopus 로고    scopus 로고
    • S. Korzennik and A. Wilson, Eds. ESA SP-418, European Space Agency, Noordwijk, Netherlands
    • Helioseismic inferences regarding the nature of banded zonal flows in the upper regions of the solar convection zone, and their equatorward migration, are presented by J. Schou et al., in Proceedings of IAU Symposium 185. New Eyes to See Inside the Sun and Stars. F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Eds. (Kluwer, Dordrecht, Netherlands, 1998), pp. 199-212; J. Schou, Astrophys. J. 523, L181 (1999); R. Howe, R. W. Komm, F. Hill, Sol. Phys., in press; R. Howe et al., Astrophys J., in press; and J. Toomre et al., Sol. Phys., in press. Similar flows on the solar surface had previously been detected through direct Doppler observations [R. Howard and B. J. LaBonte, Astrophys. J. 239, L33 (1980)]. For extensive results of surface observations of these flows, see work by R. K. Ulrich, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, S. Korzennik and A. Wilson, Eds. (ESA SP-418, European Space Agency, Noordwijk, Netherlands, 1998), pp. 851-855.
    • (1998) Structure and Dynamics of the Interior of the Sun and Sun-like Stars , pp. 851-855
    • Ulrich, R.K.1
  • 39
    • 0012738107 scopus 로고    scopus 로고
    • Robotic Exploration Close to the Sun: Scientific Basis, S. R. Habbal, Ed. American Institute of Physics, Woodbury, NY
    • A. G. Kosovichev, in Robotic Exploration Close to the Sun: Scientific Basis, vol. 385 of AIP Conference Proceedings, S. R. Habbal, Ed. (American Institute of Physics, Woodbury, NY, 1997), pp. 159-166; M. Takata and H. Shibahashi, Astrophys. J. 504, 1035 (1998); H. M. Antia and S. M. Chitre, Astron. Astrophys. 339, 239 (1998); A. S. Brun, S. Turck-Chièze, J.-P. Zahn, Astrophys. J. 525, 1032 (1999); (17).
    • (1997) AIP Conference Proceedings , vol.385 , pp. 159-166
    • Kosovichev, A.G.1
  • 40
    • 22044447644 scopus 로고    scopus 로고
    • A. G. Kosovichev, in Robotic Exploration Close to the Sun: Scientific Basis, vol. 385 of AIP Conference Proceedings, S. R. Habbal, Ed. (American Institute of Physics, Woodbury, NY, 1997), pp. 159-166; M. Takata and H. Shibahashi, Astrophys. J. 504, 1035 (1998); H. M. Antia and S. M. Chitre, Astron. Astrophys. 339, 239 (1998); A. S. Brun, S. Turck-Chièze, J.-P. Zahn, Astrophys. J. 525, 1032 (1999); (17).
    • (1998) Astrophys. J. , vol.504 , pp. 1035
    • Takata, M.1    Shibahashi, H.2
  • 41
    • 0000264780 scopus 로고    scopus 로고
    • A. G. Kosovichev, in Robotic Exploration Close to the Sun: Scientific Basis, vol. 385 of AIP Conference Proceedings, S. R. Habbal, Ed. (American Institute of Physics, Woodbury, NY, 1997), pp. 159-166; M. Takata and H. Shibahashi, Astrophys. J. 504, 1035 (1998); H. M. Antia and S. M. Chitre, Astron. Astrophys. 339, 239 (1998); A. S. Brun, S. Turck-Chièze, J.-P. Zahn, Astrophys. J. 525, 1032 (1999); (17).
    • (1998) Astron. Astrophys. , vol.339 , pp. 239
    • Antia, H.M.1    Chitre, S.M.2
  • 42
    • 0033544254 scopus 로고    scopus 로고
    • 17
    • A. G. Kosovichev, in Robotic Exploration Close to the Sun: Scientific Basis, vol. 385 of AIP Conference Proceedings, S. R. Habbal, Ed. (American Institute of Physics, Woodbury, NY, 1997), pp. 159-166; M. Takata and H. Shibahashi, Astrophys. J. 504, 1035 (1998); H. M. Antia and S. M. Chitre, Astron. Astrophys. 339, 239 (1998); A. S. Brun, S. Turck-Chièze, J.-P. Zahn, Astrophys. J. 525, 1032 (1999); (17).
    • (1999) Astrophys. J. , vol.525 , pp. 1032
    • Brun, A.S.1    Turck-Chièze, S.2    Zahn, J.-P.3
  • 48
    • 0343904571 scopus 로고    scopus 로고
    • note
    • This work uses data obtained by the GONG project, managed by the National Solar Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy (AURA), under a cooperative agreement with NSF. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísico de Canarias, and Cerro Tololo Interamerican Observatory. The SOI involving MDI is supported by NASA grant NAG 5-3077 to Stanford University. SOHO is a mission of international cooperation between ESA and NASA. R.W.K. and, in part, R.H. were supported by NASA contract S-92698-F. J.C.-D. was supported in part by the Danish National Research Foundation through the establishment of the Theoretical Astrophysics Center. M.J.T. was supported in part by the UK Particle Physics and Astronomy Research Council. J.T. was supported in part by NASA through grants NAG 5-7996 and NAG 5-8133 and by NSF through grant ATM-9731676. We thank D. O. Gough for helpful comments on the manuscript.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.