-
1
-
-
0000458209
-
-
For a review of substrate-directable reactions, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
-
(1993)
Chem. Rev.
, vol.93
, pp. 1307
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
5
-
-
0342917448
-
-
note
-
For compounds 8-10, inverse addition of the amide to the organolithium was required to obtain high yields. Though an excess of the organilithium reagent was used in most cases, double addition to form the tertiary alcohol was not observed.
-
-
-
-
6
-
-
0342917447
-
-
note
-
Reduction of amide 3 provides a simpler and higher yielding alternative to the previously reported route to FPP.
-
-
-
-
7
-
-
33845183108
-
-
Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 393
-
-
Prakash, G.K.S.1
Krishnamurti, R.2
Olah, G.A.3
-
8
-
-
12644312578
-
-
Mancuso, A. J.; Huang, S.; Swern, D. J. Org. Chem. 1978, 43, 2480.
-
(1978)
J. Org. Chem.
, vol.43
, pp. 2480
-
-
Mancuso, A.J.1
Huang, S.2
Swern, D.3
-
9
-
-
10044289888
-
-
Gold, V., Ed.; Academic: New York
-
For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
-
(1966)
Advances in Physical Organic Chemistry
, vol.4
, pp. 1-29
-
-
Bell, R.P.1
-
10
-
-
0003033957
-
-
Patai, S., Ed.; Interscience: London
-
For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
-
(1970)
The Chemistry of the Carbonyl Group
, vol.2
, pp. 1-61
-
-
Ogata, Y.1
Kawasaki, A.2
-
11
-
-
0001435366
-
-
For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 11067
-
-
Wiberg, K.B.1
Morgan, K.M.2
Malltz, H.3
-
12
-
-
0039409185
-
-
For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
-
(1967)
J. Phys. Chem.
, vol.71
, pp. 4509
-
-
Pocker, Y.1
Meany, J.E.2
Nist, B.J.3
-
13
-
-
0342917444
-
-
For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
-
(1975)
Gazz. Chim. Ital.
, vol.105
, pp. 125
-
-
Gianni, P.1
Matteoli, E.2
-
14
-
-
0342483164
-
-
note
-
See the Supporting Information in ref 2a for the characterization of compound 14.
-
-
-
-
15
-
-
0342917443
-
-
note
-
The synthesis of 6-methyl-FPP has been previously reported. See ref 2b. 6-Triethylsilyl-FPP was synthesized from 2,6-diiodo-4-(pyrrolidin-1-yl)pyridine in two steps by sequential metal halogen exchange reactions trapping with chlorotriethylsilane and then DMF.
-
-
-
-
16
-
-
0343788312
-
-
note
-
The 6-triethylsilyl-FPP catalyst (15) was chosen to illustrate this point because it is the least selective of the FPP derivatives we have prepared, displaying the largest rate of the nondirected reaction. Due to the high rate of this reaction, a delay in the methanolysis of 12 would be most evident with this catalyst.
-
-
-
-
17
-
-
0342483163
-
-
note
-
No reaction is observed between benzaldehyde and bromoethanol.
-
-
-
-
18
-
-
0017200512
-
-
Agrawal, K. C.; Booth, B. A.; DeNuzzo, S. M.; Sartorelli, A. C. J. Med. Chem. 1976, 19, 1209.
-
(1976)
J. Med. Chem.
, vol.19
, pp. 1209
-
-
Agrawal, K.C.1
Booth, B.A.2
DeNuzzo, S.M.3
Sartorelli, A.C.4
-
19
-
-
0342483162
-
-
note
-
3OD (1.0 M) and PNPOH (0.1 M) in chloroform reveals resonances for the methanol hemiacetal at δ = 5.51 (s, 1H), 6.45 (br, 1H), and 6.55 (br, 1H). The ratio of the methanol hemiacetal to the aldehyde under these conditions is 2.7:1 in favor of the hemiacetal. If 19 were the resting state, we would expect to observe the acetal methine proton further downfield at about δ = 6.0.
-
-
-
-
20
-
-
84986524642
-
-
a units more acidic than the corresponding alcohol. See ref 8a, pp 12-16. For data on the acidity of pyridine carboxaldehyde hydrates, see: Owen, T. C. J. Heterocycl. Chem. 1990, 27, 987.
-
(1990)
J. Heterocycl. Chem.
, vol.27
, pp. 987
-
-
Owen, T.C.1
-
21
-
-
33845283317
-
-
Menger has described the use of aldehyde hydrates as catalysts for the hydrolysis of active esters. See: Menger, F. M.; Ladika, M. J. Am. Chem. Soc. 1987, 109, 3145. The use of the corresponding ketones results in a less active catalyst, consistent with our findings. See: Menger, F. M.; Persichetti, R. A. J. Org. Chem. 1987, 52, 3451.
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 3145
-
-
Menger, F.M.1
Ladika, M.2
-
22
-
-
0001410033
-
-
Menger has described the use of aldehyde hydrates as catalysts for the hydrolysis of active esters. See: Menger, F. M.; Ladika, M. J. Am. Chem. Soc. 1987, 109, 3145. The use of the corresponding ketones results in a less active catalyst, consistent with our findings. See: Menger, F. M.; Persichetti, R. A. J. Org. Chem. 1987, 52, 3451.
-
(1987)
J. Org. Chem.
, vol.52
, pp. 3451
-
-
Menger, F.M.1
Persichetti, R.A.2
-
23
-
-
0342917439
-
-
note
-
1H NMR. The exception to this is the trifluoromethyl ketone 5, which is found to exist as a 10:1 ratio of hemiketal/hydrate (due to adventitious moisture), with none of the free ketone being observed. In this case, the selectivity is due to the steric hindrance and resulting lack of nucleophilicity of the hemiketal adduct.
-
-
-
-
30
-
-
0342917438
-
-
(f) De Clercq, P. J.; Madder, A.; Declercq, J.-P. J. Org. Chem. 1998, 63, 2548.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 2548
-
-
De Clercq, P.J.1
Madder, A.2
Declercq, J.-P.3
|