메뉴 건너뛰기




Volumn 65, Issue 4, 2000, Pages 974-978

Enhanced selectivities for the hydroxyl-directed methanolysis of esters using the 2-acyl-4-aminopyridine class of acyl transfer catalysts: Ketones as binding sites

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; AMINOPYRIDINE DERIVATIVE; ESTER; HYDROXYL GROUP; KETONE; PYRROLIDINE DERIVATIVE;

EID: 0034712265     PISSN: 00223263     EISSN: None     Source Type: Journal    
DOI: 10.1021/jo991202k     Document Type: Article
Times cited : (23)

References (30)
  • 5
    • 0342917448 scopus 로고    scopus 로고
    • note
    • For compounds 8-10, inverse addition of the amide to the organolithium was required to obtain high yields. Though an excess of the organilithium reagent was used in most cases, double addition to form the tertiary alcohol was not observed.
  • 6
    • 0342917447 scopus 로고    scopus 로고
    • note
    • Reduction of amide 3 provides a simpler and higher yielding alternative to the previously reported route to FPP.
  • 9
    • 10044289888 scopus 로고
    • Gold, V., Ed.; Academic: New York
    • For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
    • (1966) Advances in Physical Organic Chemistry , vol.4 , pp. 1-29
    • Bell, R.P.1
  • 10
    • 0003033957 scopus 로고
    • Patai, S., Ed.; Interscience: London
    • For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
    • (1970) The Chemistry of the Carbonyl Group , vol.2 , pp. 1-61
    • Ogata, Y.1    Kawasaki, A.2
  • 11
    • 0001435366 scopus 로고
    • For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 11067
    • Wiberg, K.B.1    Morgan, K.M.2    Malltz, H.3
  • 12
    • 0039409185 scopus 로고
    • For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
    • (1967) J. Phys. Chem. , vol.71 , pp. 4509
    • Pocker, Y.1    Meany, J.E.2    Nist, B.J.3
  • 13
    • 0342917444 scopus 로고
    • For reviews on the hydration of aldehydes and ketones see: (a) Bell, R. P. In Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic: New York, 1966; Vol. 4, pp 1-29. (b) Ogata, Y.; Kawasaki, A. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: London, 1970; Vol. 2, pp 1-61. For a recent study, see: (c) Wiberg, K. B.; Morgan, K. M.; Malltz, H. J. Am. Chem. Soc. 1994, 116, 11067. For a study of the hydration of pyridine carboxaldehydes, see: Pocker, Y.; Meany, J. E.; Nist, B. J. J. Phys. Chem. 1967, 71, 4509. Gianni, P.; Matteoli, E. Gazz. Chim. Ital. 1975, 105, 125.
    • (1975) Gazz. Chim. Ital. , vol.105 , pp. 125
    • Gianni, P.1    Matteoli, E.2
  • 14
    • 0342483164 scopus 로고    scopus 로고
    • note
    • See the Supporting Information in ref 2a for the characterization of compound 14.
  • 15
    • 0342917443 scopus 로고    scopus 로고
    • note
    • The synthesis of 6-methyl-FPP has been previously reported. See ref 2b. 6-Triethylsilyl-FPP was synthesized from 2,6-diiodo-4-(pyrrolidin-1-yl)pyridine in two steps by sequential metal halogen exchange reactions trapping with chlorotriethylsilane and then DMF.
  • 16
    • 0343788312 scopus 로고    scopus 로고
    • note
    • The 6-triethylsilyl-FPP catalyst (15) was chosen to illustrate this point because it is the least selective of the FPP derivatives we have prepared, displaying the largest rate of the nondirected reaction. Due to the high rate of this reaction, a delay in the methanolysis of 12 would be most evident with this catalyst.
  • 17
    • 0342483163 scopus 로고    scopus 로고
    • note
    • No reaction is observed between benzaldehyde and bromoethanol.
  • 19
    • 0342483162 scopus 로고    scopus 로고
    • note
    • 3OD (1.0 M) and PNPOH (0.1 M) in chloroform reveals resonances for the methanol hemiacetal at δ = 5.51 (s, 1H), 6.45 (br, 1H), and 6.55 (br, 1H). The ratio of the methanol hemiacetal to the aldehyde under these conditions is 2.7:1 in favor of the hemiacetal. If 19 were the resting state, we would expect to observe the acetal methine proton further downfield at about δ = 6.0.
  • 20
    • 84986524642 scopus 로고
    • a units more acidic than the corresponding alcohol. See ref 8a, pp 12-16. For data on the acidity of pyridine carboxaldehyde hydrates, see: Owen, T. C. J. Heterocycl. Chem. 1990, 27, 987.
    • (1990) J. Heterocycl. Chem. , vol.27 , pp. 987
    • Owen, T.C.1
  • 21
    • 33845283317 scopus 로고
    • Menger has described the use of aldehyde hydrates as catalysts for the hydrolysis of active esters. See: Menger, F. M.; Ladika, M. J. Am. Chem. Soc. 1987, 109, 3145. The use of the corresponding ketones results in a less active catalyst, consistent with our findings. See: Menger, F. M.; Persichetti, R. A. J. Org. Chem. 1987, 52, 3451.
    • (1987) J. Am. Chem. Soc. , vol.109 , pp. 3145
    • Menger, F.M.1    Ladika, M.2
  • 22
    • 0001410033 scopus 로고
    • Menger has described the use of aldehyde hydrates as catalysts for the hydrolysis of active esters. See: Menger, F. M.; Ladika, M. J. Am. Chem. Soc. 1987, 109, 3145. The use of the corresponding ketones results in a less active catalyst, consistent with our findings. See: Menger, F. M.; Persichetti, R. A. J. Org. Chem. 1987, 52, 3451.
    • (1987) J. Org. Chem. , vol.52 , pp. 3451
    • Menger, F.M.1    Persichetti, R.A.2
  • 23
    • 0342917439 scopus 로고    scopus 로고
    • note
    • 1H NMR. The exception to this is the trifluoromethyl ketone 5, which is found to exist as a 10:1 ratio of hemiketal/hydrate (due to adventitious moisture), with none of the free ketone being observed. In this case, the selectivity is due to the steric hindrance and resulting lack of nucleophilicity of the hemiketal adduct.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.