-
1
-
-
0013444386
-
Polypropylene resins
-
CEH Report SRI International, Menlo Park, CA
-
A. Jebens, "Polypropylene resins," Chemical Economics Handbook (CEH) Report (SRI International, Menlo Park, CA, 1997) (available at http://ceh.sric.sri.com/ Public/Reports).
-
(1997)
Chemical Economics Handbook
-
-
Jebens, A.1
-
3
-
-
0343922162
-
High density polyethylene resins
-
CEH Report SRI International, Menlo Park, CA
-
A. Jebens, "High density polyethylene resins," Chemical Economics Handbook (CEH) Report (SRI International, Menlo Park, CA, 1999) (available at http:// ceh.sric.sri.com/Public/Reports).
-
(1999)
Chemical Economics Handbook
-
-
Jebens, A.1
-
8
-
-
2642648668
-
-
S. B. Roscoe, J. M. J. Fréchet, J. F. Walzer, A. J. Dias, Science 280, 270 (1998).
-
(1998)
Science
, vol.280
, pp. 270
-
-
Roscoe, S.B.1
Fréchet, J.M.J.2
Walzer, J.F.3
Dias, A.J.4
-
10
-
-
0034695625
-
-
T. R. Younkin et al., Science 287, 460 (2000).
-
(2000)
Science
, vol.287
, pp. 460
-
-
Younkin, T.R.1
-
11
-
-
0343922159
-
-
U.S. Patent 5,008,204 (1991)
-
F. C. Stehling, U.S. Patent 5,008,204 (1991).
-
-
-
Stehling, F.C.1
-
12
-
-
0343050530
-
-
U.S. Patent 5,064,802 (1991)
-
J. C. Stevens, U.S. Patent 5,064,802 (1991).
-
-
-
Stevens, J.C.1
-
13
-
-
0001720542
-
-
H.-H. Shih, C.-M. Wong, Y.-C. Wang, C.-J. Huang, C.-C. Wu, J. Appl. Polym. Sci. 73, 1769 (1999).
-
(1999)
J. Appl. Polym. Sci.
, vol.73
, pp. 1769
-
-
Shih, H.-H.1
Wong, C.-M.2
Wang, Y.-C.3
Huang, C.-J.4
Wu, C.-C.5
-
16
-
-
0011349392
-
-
and gel permeation chromatography (GPC)
-
w ≈ 30,000 daltons) and highly branched material (more than 14% branched repeat units) as determined by temperature rising elution fractionation (TREF) [L. Wild, T. R. Ryle, D. C. Knobeloch, I. R. Peat, J. Polym. Sci. Polym. Phys. Ed. 20, 441 (1982)] and gel permeation chromatography (GPC).
-
(1982)
J. Polym. Sci. Polym. Phys. Ed.
, vol.20
, pp. 441
-
-
Wild, L.1
Ryle, T.R.2
Knobeloch, D.C.3
Peat, I.R.4
-
17
-
-
0025702722
-
-
D. Broseta, G. H. Fredrickson, E. Helfand, L. Leibler, Macromolecules 23, 132 (1990).
-
(1990)
Macromolecules
, vol.23
, pp. 132
-
-
Broseta, D.1
Fredrickson, G.H.2
Helfand, E.3
Leibler, L.4
-
21
-
-
0033883097
-
-
K. A. Chaffin, F. S. Bates, G. M. Brown, P. Brant, J. Polym. Sci. Polym. Phys. 38, 108 (2000).
-
(2000)
J. Polym. Sci. Polym. Phys.
, vol.38
, pp. 108
-
-
Chaffin, K.A.1
Bates, F.S.2
Brown, G.M.3
Brant, P.4
-
22
-
-
0343050531
-
-
note
-
Linear dynamic mechanical spectroscopy measurements indicate that all PE and iPP polymer chain relaxation times are less than 0.1 s at the laminate molding temperature. Hence, the 10-min molding time far exceeds the time required to achieve an equilibrium interfacial composition profile.
-
-
-
-
26
-
-
0028484814
-
-
L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994).
-
(1994)
Macromolecules
, vol.27
, pp. 4639
-
-
Fetters, L.J.1
Lohse, D.J.2
Richter, D.3
Witten, T.A.4
Zirkel, A.5
-
30
-
-
0342616321
-
-
note
-
Because molecular conformations are perturbed by crystallization, PE/iPP weld strength may be affected by laminate cooling rate, as shown by Lin et al. (32). Experiments with mPE/miPP laminates confirm that peel strength decreases with decreasing cooling rate. This is not a consequential factor with glassy polymers because vitrification is essentially uncorrelated with chain conformation.
-
-
-
-
31
-
-
0343050529
-
-
note
-
Peel tests on laminated films of Ziegler-Natta iPP and ethylene-propylene (block) copolymer (32) resulted in adhesive strengths comparable to those reported here for the Ziegler-Natta polymers, that is, more than an order of magnitude lower than the failure strength of the all-metallocene materials.
-
-
-
-
33
-
-
0343050528
-
-
note
-
Financial support was provided to the University of Minnesota by the Exxon Chemical Company. TEM and x-ray scattering measurements were conducted at the University of Minnesota Materials Research Science and Engineering Center-supported Institute of Technology Characterization Facility.
-
-
-
|