-
2
-
-
0003595562
-
-
Springer, New York
-
The classic implementations are documented in B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines-EISPACK Guide, 2nd ed. (Springer, New York, 1976), See also W. H. Press, S. A. Teukolsky, W. T. Vetterling. and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge University, Cambridge, U.K., 1992).
-
(1976)
Matrix Eigensystem Routines-EISPACK Guide, 2nd Ed.
-
-
Smith, B.T.1
Boyle, J.M.2
Dongarra, J.J.3
Garbow, B.S.4
Ikebe, Y.Y.5
Klema, V.C.6
Moler, C.B.7
-
3
-
-
0003474751
-
-
Cambridge University, Cambridge, U.K.
-
The classic implementations are documented in B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines-EISPACK Guide, 2nd ed. (Springer, New York, 1976), See also W. H. Press, S. A. Teukolsky, W. T. Vetterling. and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge University, Cambridge, U.K., 1992).
-
(1992)
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
4
-
-
0004235196
-
-
McGraw-Hill, New York
-
The required asymptotic expansion of the gamma function is given in M. A. Spiegel, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 102.
-
(1968)
Mathematical Handbook
, pp. 102
-
-
Spiegel, M.A.1
-
5
-
-
21544476628
-
-
G. Moro and J. H. Freed, J. Phys. Chem. 84, 2837 (1980); J. Chem. Phys. 74, 3757 (1981); K. V. Vasavada, D. J. Schneider, and J. H. Freed, ibid. 86, 647 (1987).
-
(1980)
J. Phys. Chem.
, vol.84
, pp. 2837
-
-
Moro, G.1
Freed, J.H.2
-
6
-
-
36749113314
-
-
G. Moro and J. H. Freed, J. Phys. Chem. 84, 2837 (1980); J. Chem. Phys. 74, 3757 (1981); K. V. Vasavada, D. J. Schneider, and J. H. Freed, ibid. 86, 647 (1987).
-
(1981)
J. Chem. Phys.
, vol.74
, pp. 3757
-
-
-
7
-
-
36549100504
-
-
G. Moro and J. H. Freed, J. Phys. Chem. 84, 2837 (1980); J. Chem. Phys. 74, 3757 (1981); K. V. Vasavada, D. J. Schneider, and J. H. Freed, ibid. 86, 647 (1987).
-
(1987)
J. Chem. Phys.
, vol.86
, pp. 647
-
-
Vasavada, K.V.1
Schneider, D.J.2
Freed, J.H.3
-
9
-
-
0004236492
-
-
1989, 2nd ed., Johns Hopkins University, Baltimore
-
For example, in the 1989, 2nd ed., Matrix Computations (Johns Hopkins University, Baltimore, 1989), Golub and Van Loan were "unaware of any successful applications of the unsymmetric Lanczos algorithm" on account of breakdown - see p. 503.
-
(1989)
Matrix Computations
-
-
-
10
-
-
25444452938
-
-
R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
-
(1991)
Numer. Math.
, vol.60
, pp. 315
-
-
Freund, R.W.1
Naehtigal, N.M.2
-
11
-
-
25444452938
-
-
USA
-
R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
-
(1993)
Siam J. Sci. Comput.
, vol.14
, pp. 137
-
-
Freund, R.W.1
Gutknecht, M.H.2
Nachtigal, N.M.3
-
12
-
-
25444452938
-
-
R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
-
(1994)
Siam J. Sci. Comput.
, vol.15
, pp. 313
-
-
Freund, R.W.1
Naehtigal, N.M.2
-
14
-
-
36449005455
-
-
For an application of the Arnoldi method in chemical physics, consider the short-iterative Arnoldi method of W. T. Pollard and R. A. Freisner, J. Chem. Phys. 100, 5054 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5054
-
-
Pollard, W.T.1
Freisner, R.A.2
-
16
-
-
0242510121
-
-
H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984). See also, R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).
-
(1984)
J. Chem. Phys.
, vol.81
, pp. 3967
-
-
Tal-Ezer, H.1
Kosloff, R.2
-
17
-
-
0000018266
-
-
H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984). See also, R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).
-
(1994)
Annu. Rev. Phys. Chem.
, vol.45
, pp. 145
-
-
Kosloff, R.1
-
19
-
-
0001351097
-
-
W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 5538
-
-
Huisinga, W.1
Kosloff, R.2
Saalfrank, P.3
-
20
-
-
36449000765
-
-
W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 10005
-
-
Ashkenazi, G.1
Kosloff, R.2
Ruhman, S.3
Tal-Ezer, H.4
-
21
-
-
0000995622
-
-
W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
-
(1992)
J. Phys. A
, vol.25
, pp. 1283
-
-
Berman, M.1
Kosloff, R.2
Tal-Ezer, H.3
-
22
-
-
85037794567
-
-
in press
-
P. Hazendonk, A. D. Bain, H. Grondey, P. H. M. Harrison, and R. S. Dumont, J. Magn. Reson. (in press).
-
J. Magn. Reson.
-
-
Hazendonk, P.1
Bain, A.D.2
Grondey, H.3
Harrison, P.H.M.4
Dumont, R.S.5
-
23
-
-
85037795612
-
-
note
-
Two groups of spins are treated as different type if all couplings between the constituent spins are weak - i.e., small compared with the chemical shift difference.
-
-
-
-
25
-
-
3743064267
-
-
H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
-
(1956)
J. Chem. Phys.
, vol.25
, pp. 1228
-
-
Gutowsky, H.S.1
Holm, C.H.2
-
26
-
-
85012725364
-
-
H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
-
(1965)
Adv. Magn. Reson.
, vol.1
, pp. 33
-
-
Johnson, C.S.1
-
27
-
-
0001303793
-
-
H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
-
(1969)
J. Am. Chem. Soc.
, vol.91
, pp. 1304
-
-
Binsch, G.1
-
31
-
-
0003555195
-
-
SIAM, Philadelphia
-
J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK User's Guide (SIAM, Philadelphia, 1979).
-
(1979)
LINPACK User's Guide
-
-
Dongarra, J.J.1
Moler, C.B.2
Bunch, J.R.3
Stewart, G.W.4
-
32
-
-
85037806275
-
-
note
-
Rate broadening - as a fullwidth at half maximum - is simply given by k when k is small compared with Δω. Division by 2π is required when the spectrum is given as a function of ν in Hz.
-
-
-
-
33
-
-
85037800543
-
-
note
-
ω= 8192 frequencies for mutual exchange systems with 1 Hz line broadening, the direct spectrum portion of the computation constitutes a significant fraction of the total CPU time only for systems with fewer than nine spins. Since the simulation of a smaller spin system spectrum is reasonably fast, the elimi-nation of overhead in this part of the computation is not critical to the usefulness of the methodology.
-
-
-
-
34
-
-
85037787516
-
-
note
-
T.
-
-
-
-
35
-
-
85037801884
-
-
note
-
2n√πn. Compare this with Eq. (1) which gives the size of the largest sub-block of this Liouvillian. The sub-block is thus a factor, 2/√πn, smaller. This factor exactly affords an additional spin - with the same computation time - when n ≅ 20. Note that the asymptotic form given here for the number of coherence level 1 transitions differs from that given in Sec. II of Ref. 1. The formula given there [the unlabeled equation after Eq. (14)] is incorrect. It is based on an inappropriately simplified Sterling formula. The conclusions of Ref. 1, based on this formula, are nevertheless still valid.
-
-
-
-
36
-
-
85037791437
-
-
note
-
Eight spins is beyond the scope of the Householder method, implemented on our computer, due to the requirement of about 6 days of CPU time - this is not viable in a shared departmental facility. The memory requirements of the Householder method are not out of scope until nine spins are considered - more than 4 gigabytes random access memory is needed in this case.
-
-
-
-
37
-
-
0001288470
-
-
C. C. Paige, Linear Algebr. Appl. 34, 235 (1980); Y. Saad, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 17, 687 (1980).
-
(1980)
Linear Algebr. Appl.
, vol.34
, pp. 235
-
-
Paige, C.C.1
|