메뉴 건너뛰기




Volumn 113, Issue 8, 2000, Pages 3270-3281

Dual Lanczos simulation of dynamic nuclear magnetic resonance spectra for systems with many spins or exchange sites

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; EIGENVALUES AND EIGENFUNCTIONS; ELECTRON SPIN RESONANCE SPECTROSCOPY; FOURIER TRANSFORMS; MAGNETIZATION; NUMERICAL METHODS;

EID: 0034702669     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1287327     Document Type: Article
Times cited : (11)

References (38)
  • 4
    • 0004235196 scopus 로고
    • McGraw-Hill, New York
    • The required asymptotic expansion of the gamma function is given in M. A. Spiegel, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 102.
    • (1968) Mathematical Handbook , pp. 102
    • Spiegel, M.A.1
  • 5
    • 21544476628 scopus 로고
    • G. Moro and J. H. Freed, J. Phys. Chem. 84, 2837 (1980); J. Chem. Phys. 74, 3757 (1981); K. V. Vasavada, D. J. Schneider, and J. H. Freed, ibid. 86, 647 (1987).
    • (1980) J. Phys. Chem. , vol.84 , pp. 2837
    • Moro, G.1    Freed, J.H.2
  • 6
    • 36749113314 scopus 로고
    • G. Moro and J. H. Freed, J. Phys. Chem. 84, 2837 (1980); J. Chem. Phys. 74, 3757 (1981); K. V. Vasavada, D. J. Schneider, and J. H. Freed, ibid. 86, 647 (1987).
    • (1981) J. Chem. Phys. , vol.74 , pp. 3757
  • 9
    • 0004236492 scopus 로고    scopus 로고
    • 1989, 2nd ed., Johns Hopkins University, Baltimore
    • For example, in the 1989, 2nd ed., Matrix Computations (Johns Hopkins University, Baltimore, 1989), Golub and Van Loan were "unaware of any successful applications of the unsymmetric Lanczos algorithm" on account of breakdown - see p. 503.
    • (1989) Matrix Computations
  • 10
    • 25444452938 scopus 로고
    • R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
    • (1991) Numer. Math. , vol.60 , pp. 315
    • Freund, R.W.1    Naehtigal, N.M.2
  • 11
    • 25444452938 scopus 로고
    • USA
    • R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
    • (1993) Siam J. Sci. Comput. , vol.14 , pp. 137
    • Freund, R.W.1    Gutknecht, M.H.2    Nachtigal, N.M.3
  • 12
    • 25444452938 scopus 로고
    • R. W. Freund and N. M. Naehtigal, Numer. Math. 60, 315 (1991); R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, Siam J. Sci. Comput. (USA) 14, 137 (1993); R. W. Freund and N. M. Naehtigal, ibid. 15, 313 (1994).
    • (1994) Siam J. Sci. Comput. , vol.15 , pp. 313
    • Freund, R.W.1    Naehtigal, N.M.2
  • 14
    • 36449005455 scopus 로고
    • For an application of the Arnoldi method in chemical physics, consider the short-iterative Arnoldi method of W. T. Pollard and R. A. Freisner, J. Chem. Phys. 100, 5054 (1994).
    • (1994) J. Chem. Phys. , vol.100 , pp. 5054
    • Pollard, W.T.1    Freisner, R.A.2
  • 16
    • 0242510121 scopus 로고
    • H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984). See also, R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).
    • (1984) J. Chem. Phys. , vol.81 , pp. 3967
    • Tal-Ezer, H.1    Kosloff, R.2
  • 17
    • 0000018266 scopus 로고
    • H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984). See also, R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).
    • (1994) Annu. Rev. Phys. Chem. , vol.45 , pp. 145
    • Kosloff, R.1
  • 19
    • 0001351097 scopus 로고    scopus 로고
    • W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
    • (1999) J. Chem. Phys. , vol.110 , pp. 5538
    • Huisinga, W.1    Kosloff, R.2    Saalfrank, P.3
  • 20
    • 36449000765 scopus 로고
    • W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
    • (1995) J. Chem. Phys. , vol.103 , pp. 10005
    • Ashkenazi, G.1    Kosloff, R.2    Ruhman, S.3    Tal-Ezer, H.4
  • 21
    • 0000995622 scopus 로고
    • W. Huisinga, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999); G. Ashkenazi, R. Kosloff, S. Ruhman, and H. Tal-Ezer, ibid. 103, 10005 (1995); M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).
    • (1992) J. Phys. A , vol.25 , pp. 1283
    • Berman, M.1    Kosloff, R.2    Tal-Ezer, H.3
  • 23
    • 85037795612 scopus 로고    scopus 로고
    • note
    • Two groups of spins are treated as different type if all couplings between the constituent spins are weak - i.e., small compared with the chemical shift difference.
  • 25
    • 3743064267 scopus 로고
    • H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
    • (1956) J. Chem. Phys. , vol.25 , pp. 1228
    • Gutowsky, H.S.1    Holm, C.H.2
  • 26
    • 85012725364 scopus 로고
    • H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
    • (1965) Adv. Magn. Reson. , vol.1 , pp. 33
    • Johnson, C.S.1
  • 27
    • 0001303793 scopus 로고
    • H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956); C. S. Johnson, Adv. Magn. Reson. 1, 33 (1965); G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
    • (1969) J. Am. Chem. Soc. , vol.91 , pp. 1304
    • Binsch, G.1
  • 32
    • 85037806275 scopus 로고    scopus 로고
    • note
    • Rate broadening - as a fullwidth at half maximum - is simply given by k when k is small compared with Δω. Division by 2π is required when the spectrum is given as a function of ν in Hz.
  • 33
    • 85037800543 scopus 로고    scopus 로고
    • note
    • ω= 8192 frequencies for mutual exchange systems with 1 Hz line broadening, the direct spectrum portion of the computation constitutes a significant fraction of the total CPU time only for systems with fewer than nine spins. Since the simulation of a smaller spin system spectrum is reasonably fast, the elimi-nation of overhead in this part of the computation is not critical to the usefulness of the methodology.
  • 34
    • 85037787516 scopus 로고    scopus 로고
    • note
    • T.
  • 35
    • 85037801884 scopus 로고    scopus 로고
    • note
    • 2n√πn. Compare this with Eq. (1) which gives the size of the largest sub-block of this Liouvillian. The sub-block is thus a factor, 2/√πn, smaller. This factor exactly affords an additional spin - with the same computation time - when n ≅ 20. Note that the asymptotic form given here for the number of coherence level 1 transitions differs from that given in Sec. II of Ref. 1. The formula given there [the unlabeled equation after Eq. (14)] is incorrect. It is based on an inappropriately simplified Sterling formula. The conclusions of Ref. 1, based on this formula, are nevertheless still valid.
  • 36
    • 85037791437 scopus 로고    scopus 로고
    • note
    • Eight spins is beyond the scope of the Householder method, implemented on our computer, due to the requirement of about 6 days of CPU time - this is not viable in a shared departmental facility. The memory requirements of the Householder method are not out of scope until nine spins are considered - more than 4 gigabytes random access memory is needed in this case.
  • 37
    • 0001288470 scopus 로고
    • C. C. Paige, Linear Algebr. Appl. 34, 235 (1980); Y. Saad, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 17, 687 (1980).
    • (1980) Linear Algebr. Appl. , vol.34 , pp. 235
    • Paige, C.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.