메뉴 건너뛰기




Volumn 31, Issue 10-12, 2000, Pages 129-142

Modelling transport in disordered media via diffusion on fractals

Author keywords

Diffusion; Disordered media; Fractals; Heat kernels; Transport

Indexed keywords


EID: 0034702079     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0895-7177(00)00080-7     Document Type: Article
Times cited : (7)

References (59)
  • 1
    • 0001582569 scopus 로고
    • Random walks and diffusion on fractals
    • Percolation Theory and Ergodic Theory of Infinite Particle Systems, Edited by H. Kesten, Springer-Verlag, New York
    • S. Goldstein, Random walks and diffusion on fractals, In Percolation Theory and Ergodic Theory of Infinite Particle Systems, Volume 8, IMA Math. Appl., (Edited by H. Kesten), pp. 121-129, Springer-Verlag, New York, (1987).
    • (1987) IMA Math. Appl. , vol.8 , pp. 121-129
    • Goldstein, S.1
  • 2
    • 0002070668 scopus 로고
    • A diffusion process on a fractal
    • Taniguchi, Katata, (Edited by K. Ito and N. Ikeda), Academic Press, Amsterdam
    • S. Kusuoka, A diffusion process on a fractal, In Symposium on Probabilistic Methdos in Mathematical Physics, Taniguchi, Katata, (Edited by K. Ito and N. Ikeda), Academic Press, Amsterdam, (1987).
    • (1987) Symposium on Probabilistic Methdos in Mathematical Physics
    • Kusuoka, S.1
  • 3
    • 0000835875 scopus 로고
    • Brownian motion on the Sierpinski gasket
    • M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Prob. Th. Rel. Fields 79, 543-623 (1988).
    • (1988) Prob. Th. Rel. Fields , vol.79 , pp. 543-623
    • Barlow, M.T.1    Perkins, E.A.2
  • 4
    • 0000869325 scopus 로고
    • Transition densities for Brownian motion on the Sierpinski carpet
    • M.T. Barlow and R.F. Bass, Transition densities for Brownian motion on the Sierpinski carpet, Prob. Th. Rel. Fields 91, 307-330 (1992).
    • (1992) Prob. Th. Rel. Fields , vol.91 , pp. 307-330
    • Barlow, M.T.1    Bass, R.F.2
  • 5
    • 21144470507 scopus 로고
    • Estimates of the transition densities for Brownian motion on nested fractals
    • T. Kumagai, Estimates of the transition densities for Brownian motion on nested fractals, Prob. Th. Rel. Fields 96, 205-224 (1993).
    • (1993) Prob. Th. Rel. Fields , vol.96 , pp. 205-224
    • Kumagai, T.1
  • 6
    • 21844490714 scopus 로고
    • Transition density estimates for Brownian motion on affine nested fractals
    • P.J. Fitzsimmons, B.M. Hambly and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Commun. Math. Phys. 165, 595-620 (1994).
    • (1994) Commun. Math. Phys. , vol.165 , pp. 595-620
    • Fitzsimmons, P.J.1    Hambly, B.M.2    Kumagai, T.3
  • 7
    • 21144479063 scopus 로고
    • Brownian motion on a homogeneous random fractal
    • B. Hambly, Brownian motion on a homogeneous random fractal, Prob. Th. Rel. Fields 94, 1-38 (1992).
    • (1992) Prob. Th. Rel. Fields , vol.94 , pp. 1-38
    • Hambly, B.1
  • 8
    • 0002343091 scopus 로고
    • Harmonic calculus on limits of networks and its application to dendrites
    • J. Kigami, Harmonic calculus on limits of networks and its application to dendrites, J. Functional Anal. 128, 48-86 (1995).
    • (1995) J. Functional Anal. , vol.128 , pp. 48-86
    • Kigami, J.1
  • 9
    • 0023452103 scopus 로고
    • Diffusion in disordered media
    • S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Adv. Phys. 36, 695-798 (1987).
    • (1987) Adv. Phys. , vol.36 , pp. 695-798
    • Havlin, S.1    Ben-Avraham, D.2
  • 11
    • 36149036329 scopus 로고
    • Fractional diffusion equation on fractals: One-dimensional case and asymptotic behaviour
    • M. Giona and H.E. Roman, Fractional diffusion equation on fractals: One-dimensional case and asymptotic behaviour, J. Phys. A: Math. Gen. 25, 2093-2105 (1992).
    • (1992) J. Phys. A: Math. Gen. , vol.25 , pp. 2093-2105
    • Giona, M.1    Roman, H.E.2
  • 12
    • 0000117917 scopus 로고
    • Fractional diffusion equation on fractals: Three-dimensional case and scattering function
    • H.E. Roman and M. Giona, Fractional diffusion equation on fractals: Three-dimensional case and scattering function, J. Phys. A: Math. Gen. 25, 2107-2117 (1992).
    • (1992) J. Phys. A: Math. Gen. , vol.25 , pp. 2107-2117
    • Roman, H.E.1    Giona, M.2
  • 13
    • 21344498117 scopus 로고
    • Continuous-time random walks and the fractional diffusion equation
    • H.E. Roman and P.A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A: Math. Gen. 27, 3407-3410 (1994).
    • (1994) J. Phys. A: Math. Gen. , vol.27 , pp. 3407-3410
    • Roman, H.E.1    Alemany, P.A.2
  • 14
    • 0001328651 scopus 로고
    • Structure of random fractals and the probability distribution of random walks
    • H.E. Roman, Structure of random fractals and the probability distribution of random walks, Phys. Rev. E 51 (6), 5422-5425 (1995).
    • (1995) Phys. Rev. E , vol.51 , Issue.6 , pp. 5422-5425
    • Roman, H.E.1
  • 15
  • 17
  • 18
    • 0001483086 scopus 로고
    • Large deviations in the supercritical branching process
    • J.D. Biggins and N.H. Bingham, Large deviations in the supercritical branching process, Adv. Appl. Prob. 25, 757-772 (1993).
    • (1993) Adv. Appl. Prob. , vol.25 , pp. 757-772
    • Biggins, J.D.1    Bingham, N.H.2
  • 19
    • 0002832308 scopus 로고
    • On a spectral analysis for the Sierpinski gasket
    • M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Analysis 1, 1-35 (1992).
    • (1992) Potential Analysis , vol.1 , pp. 1-35
    • Fukushima, M.1    Shima, T.2
  • 21
    • 0031489812 scopus 로고    scopus 로고
    • Brownian motion on a random recursive Sierpinski gasket
    • B. Hambly, Brownian motion on a random recursive Sierpinski gasket, Ann. Probab. 25, 1059-1102 (1997).
    • (1997) Ann. Probab. , vol.25 , pp. 1059-1102
    • Hambly, B.1
  • 22
    • 0029690374 scopus 로고    scopus 로고
    • Transition probabilities for the simple random walk on the Sierpinski graph
    • O.D. Jones, Transition probabilities for the simple random walk on the Sierpinski graph, Stoc. Proc. Appl. 61, 45-69 (1996).
    • (1996) Stoc. Proc. Appl. , vol.61 , pp. 45-69
    • Jones, O.D.1
  • 23
    • 0000311503 scopus 로고
    • Brownian motion on nested fractals
    • American Mathematical Society, Providence, RI
    • T. Lindstroøm, Brownian motion on nested fractals, Number 420, In Memoirs of the AMS, American Mathematical Society, Providence, RI, (1990).
    • (1990) Memoirs of the AMS , vol.420
    • Lindstroøm, T.1
  • 24
    • 77951516336 scopus 로고
    • A harmonic calculus on the Sierpinski spaces
    • J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 6, 259-290 (1989).
    • (1989) Japan J. Appl. Math. , vol.6 , pp. 259-290
    • Kigami, J.1
  • 25
    • 84924341601 scopus 로고
    • Harmonic calculus on p.c.f. self-similar sets
    • J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. AMS 335 (2), 721-755 (1993).
    • (1993) Trans. AMS , vol.335 , Issue.2 , pp. 721-755
    • Kigami, J.1
  • 26
    • 0001035130 scopus 로고
    • The construction of Brownian motion on the Sierpinski carpet
    • M.T. Barlow and R.F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. Henri Poincaré 25, 225-257 (1989).
    • (1989) Ann. Inst. Henri Poincaré , vol.25 , pp. 225-257
    • Barlow, M.T.1    Bass, R.F.2
  • 27
    • 0001008853 scopus 로고
    • Resistance and spectral dimension of Sierpinski carpets
    • M.T. Barlow, R.F. Bass and J.D. Sherwood, Resistance and spectral dimension of Sierpinski carpets, J. Phys. A 23, L253-258 (1990).
    • (1990) J. Phys. A , vol.23
    • Barlow, M.T.1    Bass, R.F.2    Sherwood, J.D.3
  • 28
    • 0000468986 scopus 로고
    • Dirichlet forms on fractals: Poincaré constant and resistance
    • S. Kusuoka and X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Prob. Th. Rel. Fields 93, 169-196 (1992).
    • (1992) Prob. Th. Rel. Fields , vol.93 , pp. 169-196
    • Kusuoka, S.1    Zhou, X.Y.2
  • 29
    • 0013675613 scopus 로고
    • Brownian motion on simple fractal spaces
    • S.O.G. Nyberg, Brownian motion on simple fractal spaces, Stochastics 55, 21-45 (1995).
    • (1995) Stochastics , vol.55 , pp. 21-45
    • Nyberg, S.O.G.1
  • 30
    • 84972561380 scopus 로고
    • Self-similar diffusions on a class of infinitely ramified fractals
    • H. Osada, Self-similar diffusions on a class of infinitely ramified fractals, J. Math. Soc. Japan 47 (4), 591-616 (1995).
    • (1995) J. Math. Soc. Japan , vol.47 , Issue.4 , pp. 591-616
    • Osada, H.1
  • 31
    • 0001181146 scopus 로고
    • Existence and unicité de la diffusion sur un ensemble fractal
    • C. Sabot, Existence and unicité de la diffusion sur un ensemble fractal, C.R. Acad. Sci. Paris. Série I 321, 1053-1059 (1995).
    • (1995) C.R. Acad. Sci. Paris. Série I , vol.321 , pp. 1053-1059
    • Sabot, C.1
  • 32
    • 85008054100 scopus 로고
    • Dirichlet forms on fractals and products of random matrices
    • S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. RIMS 25, 659-680 (1989).
    • (1989) Publ. RIMS , vol.25 , pp. 659-680
    • Kusuoka, S.1
  • 33
    • 0000648822 scopus 로고
    • Dirichlet forms, diffusion processes and spectral dimensions for nested fractals
    • Edited by Albeverio, Fenstad, Holden and Lindstroøm, Cambridge Univ. Press
    • M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, In Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, in Memory of R. Hoøegh-krohn, Volume 1, (Edited by Albeverio, Fenstad, Holden and Lindstroøm), pp. 151-161, Cambridge Univ. Press, (1992).
    • (1992) Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, in Memory of R. Hoøegh-krohn , vol.1 , pp. 151-161
    • Fukushima, M.1
  • 35
    • 0001539796 scopus 로고
    • Random walks on graphs, electric networks and fractals
    • A. Telcs, Random walks on graphs, electric networks and fractals, Prob. Th. Rel. Fields 82, 435-449 (1989).
    • (1989) Prob. Th. Rel. Fields , vol.82 , pp. 435-449
    • Telcs, A.1
  • 36
    • 0038962257 scopus 로고
    • Harmonic analysis on fractal spaces
    • M.T. Barlow, Harmonic analysis on fractal spaces, Séminaire Bourbaki 5, 345-368 (1992).
    • (1992) Séminaire Bourbaki , vol.5 , pp. 345-368
    • Barlow, M.T.1
  • 37
    • 0013671278 scopus 로고
    • Construction and some properties of a class of nonsymmetric diffusion processes on the Sierpinski gasket
    • Edited by K.D. Elworthy and N. Ikeda, Pitman, Montreal
    • T. Kumagai, Construction and some properties of a class of nonsymmetric diffusion processes on the Sierpinski gasket, In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Edited by K.D. Elworthy and N. Ikeda), Pitman, Montreal, (1993).
    • (1993) Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
    • Kumagai, T.1
  • 38
  • 39
    • 0001698331 scopus 로고
    • Gaussian field theories on general networks and the spectral dimensions
    • K. Hattori, T. Hattori and H. Watanabe, Gaussian field theories on general networks and the spectral dimensions, Prog. Th. Phys. Suppl. 92, 108-143 (1987).
    • (1987) Prog. Th. Phys. Suppl. , vol.92 , pp. 108-143
    • Hattori, K.1    Hattori, T.2    Watanabe, H.3
  • 41
    • 84973971662 scopus 로고
    • Effective resistances for harmonic structures on p.c.f. self-similar sets
    • J. Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets, Math. Proc. Camb. Phil. Soc. 115, 291-303 (1994).
    • (1994) Math. Proc. Camb. Phil. Soc. , vol.115 , pp. 291-303
    • Kigami, J.1
  • 43
    • 0013679253 scopus 로고
    • Rotation invariance of a class of self-similar diffusion processes on the Sierpinski gasket
    • Edited by Y. Takahashi, Plenum
    • T. Kumagai, Rotation invariance of a class of self-similar diffusion processes on the Sierpinski gasket, In Proc. Hayashibaren Forum 1992, "New Bases for Engineering Science", (Edited by Y. Takahashi), Plenum, (1992).
    • (1992) Proc. Hayashibaren Forum 1992, "New Bases for Engineering Science"
    • Kumagai, T.1
  • 44
    • 21844485200 scopus 로고
    • Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets
    • K. Hattori, T. Hattori and H. Watanabe, Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets, Prob. Th. Rel. Fields 100, 85-116 (1994).
    • (1994) Prob. Th. Rel. Fields , vol.100 , pp. 85-116
    • Hattori, K.1    Hattori, T.2    Watanabe, H.3
  • 45
    • 0013671279 scopus 로고
    • Asymptotically one-dimensional diffusions on scale-irregular gaskets
    • Faculty of Engineering, Utsunomiya University, Ishii-cho, Utsunomiya 321, Japan
    • T. Hattori, Asymptotically one-dimensional diffusions on scale-irregular gaskets, Technical Report UTUP- 105, Faculty of Engineering, Utsunomiya University, Ishii-cho, Utsunomiya 321, Japan (1994).
    • (1994) Technical Report UTUP-105
    • Hattori, T.1
  • 46
    • 0013695191 scopus 로고
    • On a limit theorem for nonstationary branching processes
    • Edited by E. Çinlar, Birkhäuser, Boston, MA
    • T. Hattori and H. Watanabe, On a limit theorem for nonstationary branching processes, In Seminar on Stochastic Processes, 1992, (Edited by E. Çinlar), pp. 173-187, Birkhäuser, Boston, MA, (1993).
    • (1993) Seminar on Stochastic Processes, 1992 , pp. 173-187
    • Hattori, T.1    Watanabe, H.2
  • 49
    • 0030558574 scopus 로고    scopus 로고
    • Homogenization on nested fractals
    • T. Kumagai and S. Kusuoka, Homogenization on nested fractals, Prob. Th. Rel. Fields 104, 375-398 (1996).
    • (1996) Prob. Th. Rel. Fields , vol.104 , pp. 375-398
    • Kumagai, T.1    Kusuoka, S.2
  • 51
    • 0001363966 scopus 로고
    • On the limiting distribution of a supercritical branching process in a random environment
    • B. Hambly, On the limiting distribution of a supercritical branching process in a random environment, J. Appl. Prob. 29, 499-518 (1992).
    • (1992) J. Appl. Prob. , vol.29 , pp. 499-518
    • Hambly, B.1
  • 52
    • 0000459757 scopus 로고
    • On the limit of a supercritical branching process
    • N.H. Bingham, On the limit of a supercritical branching process, J. Appl. Prob. 25A, 215-228 (1988).
    • (1988) J. Appl. Prob. , vol.25 A , pp. 215-228
    • Bingham, N.H.1
  • 53
    • 84974220183 scopus 로고
    • Bounds on the limiting distribution of a branching process with varying environment
    • O.D. Jones, Bounds on the limiting distribution of a branching process with varying environment, Bull. Austral. Math. Soc. 52 (3) (1995).
    • (1995) Bull. Austral. Math. Soc. , vol.52 , Issue.3
    • Jones, O.D.1
  • 54
    • 21844512209 scopus 로고
    • On constant tail behaviour for the limiting random variable in a supercritical branching process
    • B. Hambly, On constant tail behaviour for the limiting random variable in a supercritical branching process, J. Appl. Prob. 32, 267-273 (1995).
    • (1995) J. Appl. Prob. , vol.32 , pp. 267-273
    • Hambly, B.1
  • 55
    • 0031536627 scopus 로고    scopus 로고
    • Weak homogenization of anisotropic diffusion on pre-Sierpinski carpet
    • M.T. Barlow, K. Hattori, T. Hattori and H. Watanabe, Weak homogenization of anisotropic diffusion on pre-Sierpinski carpet, Commun. Math. Phys. 188, 1-27 (1997).
    • (1997) Commun. Math. Phys. , vol.188 , pp. 1-27
    • Barlow, M.T.1    Hattori, K.2    Hattori, T.3    Watanabe, H.4
  • 57
    • 21344480546 scopus 로고
    • Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals
    • J. Kigami and M.L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys. 158, 93-125 (1993).
    • (1993) Commun. Math. Phys. , vol.158 , pp. 93-125
    • Kigami, J.1    Lapidus, M.L.2
  • 58
    • 84966255002 scopus 로고
    • Hitting time bounds for Brownian motion on a fractal
    • W.B. Krebs, Hitting time bounds for Brownian motion on a fractal, Proc. A.M.S. 118, 223-232 (1993).
    • (1993) Proc. A.M.S. , vol.118 , pp. 223-232
    • Krebs, W.B.1
  • 59
    • 0000430442 scopus 로고
    • Regularity, closedness and spectral dimensions of the Dirichlet forms on p.c.f. self-similar sets
    • T. Kumagai, Regularity, closedness and spectral dimensions of the Dirichlet forms on p.c.f. self-similar sets, J. Math. Kyoto Univ. 33, 765-786 (1993).
    • (1993) J. Math. Kyoto Univ. , vol.33 , pp. 765-786
    • Kumagai, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.