-
2
-
-
0001681677
-
-
T. Kawabata, T. Wirth, K. Yahiro, H. Suzuki, K. Fuji, J. Am. Chem. Soc. 1994, 116, 10809-10810.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 10809-10810
-
-
Kawabata, T.1
Wirth, T.2
Yahiro, K.3
Suzuki, H.4
Fuji, K.5
-
4
-
-
0001584644
-
-
Formation of a stereogenic nitrogen atom by coordination with a metal cation has been claimed: D. Sato, H. Kawasaki, I. Shimada, Y. Arata, K. Okamura, T. Date, K. Koga, J. Am. Chem. Soc. 1992, 114, 761-763.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 761-763
-
-
Sato, D.1
Kawasaki, H.2
Shimada, I.3
Arata, Y.4
Okamura, K.5
Date, T.6
Koga, K.7
-
5
-
-
0000887598
-
-
Asymmetric reactions through chiral enolate intermediates are described in the reviews: a) D. Seebach, A. R. Sting, M. Hoffmann, Angew. Chem. 1996, 108, 2880-2921; Angew. Chem. Int. Ed. Engl. 1996, 35, 2708-2748;
-
(1996)
Angew. Chem.
, vol.108
, pp. 2880-2921
-
-
Seebach, D.1
Sting, A.R.2
Hoffmann, M.3
-
6
-
-
0030513164
-
-
Asymmetric reactions through chiral enolate intermediates are described in the reviews: a) D. Seebach, A. R. Sting, M. Hoffmann, Angew. Chem. 1996, 108, 2880-2921; Angew. Chem. Int. Ed. Engl. 1996, 35, 2708-2748;
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.35
, pp. 2708-2748
-
-
-
7
-
-
0000021056
-
-
b) J. Clayden, Angew. Chem. 1997, 109, 986-988; Angew. Chem. Int. Ed. Engl. 1997, 36, 949-951;
-
(1997)
Angew. Chem.
, vol.109
, pp. 986-988
-
-
Clayden, J.1
-
8
-
-
0030917481
-
-
b) J. Clayden, Angew. Chem. 1997, 109, 986-988; Angew. Chem. Int. Ed. Engl. 1997, 36, 949-951;
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.36
, pp. 949-951
-
-
-
9
-
-
0013058247
-
-
c) T. Wirth, Angew. Chem. 1997, 109, 235-237; Angew. Chem. Int. Ed. Engl. 1997, 37, 225-227.
-
(1997)
Angew. Chem.
, vol.109
, pp. 235-237
-
-
Wirth, T.1
-
10
-
-
0039650001
-
-
c) T. Wirth, Angew. Chem. 1997, 109, 235-237; Angew. Chem. Int. Ed. Engl. 1997, 37, 225-227.
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.37
, pp. 225-227
-
-
-
11
-
-
0009673198
-
-
For examples of asymmetric α-substitution of α-amino acid derivatives without employing external chiral sources, see a) D. Seebach, D. Wasmuth, Angew. Chem. 1981, 93, 1007; Angew. Chem. Int. Ed. Engl. 1981, 20, 971;
-
(1981)
Angew. Chem.
, vol.93
, pp. 1007
-
-
Seebach, D.1
Wasmuth, D.2
-
12
-
-
84985560897
-
-
For examples of asymmetric α-substitution of α-amino acid derivatives without employing external chiral sources, see a) D. Seebach, D. Wasmuth, Angew. Chem. 1981, 93, 1007; Angew. Chem. Int. Ed. Engl. 1981, 20, 971;
-
(1981)
Angew. Chem. Int. Ed. Engl.
, vol.20
, pp. 971
-
-
-
13
-
-
37049069871
-
-
b) B. Beagley, M. J. Betts, R. G. Pritchard, A. Schofield, R. J. Stoodley, S. Vohra, J. Chem. Soc. Chem. Comm. 1991, 924-925;
-
(1991)
J. Chem. Soc. Chem. Comm.
, pp. 924-925
-
-
Beagley, B.1
Betts, M.J.2
Pritchard, R.G.3
Schofield, A.4
Stoodley, R.J.5
Vohra, S.6
-
14
-
-
0000297636
-
-
c) M. J. Betts, R. G. Pritchard, A. Schofield, R. J. Stoodley, S. Vohra, J. Chem. Soc. Perkin 1 1999, 1067-1072.
-
(1999)
J. Chem. Soc. Perkin 1
, pp. 1067-1072
-
-
Betts, M.J.1
Pritchard, R.G.2
Schofield, A.3
Stoodley, R.J.4
Vohra, S.5
-
15
-
-
84986726236
-
-
A chiral nonracemic enolate has been claimed as a possible intermediate of an asymmetric rearrangement: T. Gees, W. B. Schweizer, D. Seebach, Helv. Chim. Acta. 1993, 76, 2640-2653.
-
(1993)
Helv. Chim. Acta.
, vol.76
, pp. 2640-2653
-
-
Gees, T.1
Schweizer, W.B.2
Seebach, D.3
-
16
-
-
0343331094
-
-
note
-
A reaction of 3 is briefly described in reference [3].
-
-
-
-
17
-
-
0342461879
-
-
note
-
2S, 2) 1M NaOH, 3) 47% aq HBr.
-
-
-
-
18
-
-
0342895994
-
-
note
-
17 and 18 were separately isolated in 56% and 27% yield, respectively. Each of them exists as a mixture of N-Boc E/Z isomers (4:1 for 17 and 5:1 for 18).
-
-
-
-
19
-
-
0342895993
-
-
note
-
The absolute configuration of D and E is shown provisionally.
-
-
-
-
20
-
-
0342895992
-
-
note
-
The half-life at -78°C was roughly estimated on the assumption that ΔS‡ of the restricted bond rotation is nearly zero.
-
-
-
-
21
-
-
0343766934
-
-
note
-
The Z and E enolate intermediates should afford α-methylated products of the same absolute configuration, since the 2:1 geometric mixture of enolates gave the product of 81% ee in 96% yield (Table 1, entry 1).
-
-
-
-
22
-
-
0043162336
-
-
The most stable conformation F of 3 was generated by molecular modeling search with the MM3* force field using MacroModel V6.0: a) G. Chang, W. C. Guida, W. C. Still, J. Am Chem. Soc. 1989, 111, 4379-4386;
-
(1989)
J. Am Chem. Soc.
, vol.111
, pp. 4379-4386
-
-
Chang, G.1
Guida, W.C.2
Still, W.C.3
-
24
-
-
0342895991
-
-
note
-
1. The difference may increase at the transition state for deprotonation as a result of the enhanced steric interactions in the presence of a base.
-
-
-
-
25
-
-
0342461875
-
-
note
-
The 2,3-dihydroxazole ring in the potassium enolate generated from 21 and KHMDS is supposed to be nearly planar.
-
-
-
-
26
-
-
0343331090
-
-
note
-
A mixed aggregate of an achiral enolate with an undeprotonated starting material was considered as another possible intermediate for asymmetric induction. This was eliminated by a crossover experiment between 3 and 7: A 1:1 mixture of racemic 3 and (S)-7 (> 99% ee) was α-methylated according to the procedure in Table 1 and afforded racemic 4 (79% yield) and (S)-8 (74% ee, 79% yield), respectively.
-
-
-
|