메뉴 건너뛰기




Volumn 39, Issue 18, 2000, Pages 3212-3237

Force spectroscopy of molecular systems - Single molecule spectroscopy of polymers and biomolecules

Author keywords

DNA recognition; Force spectroscopy; Polymers; Scanning probe methods

Indexed keywords

LIGAND; POLYMER;

EID: 0034665438     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-x     Document Type: Review
Times cited : (338)

References (159)
  • 36
    • 85088333589 scopus 로고    scopus 로고
    • note
    • p < 0, if the piezo device moves towards the cantilever.
  • 38
    • 0343362791 scopus 로고    scopus 로고
    • note
    • On a microscopic level, repulsion is a matter of overlapping wavefunctions of the tip and the sample according to Pauli's rule. Macroscopically, elastic restoring forces determine the behavior in this regime.
  • 39
    • 85088333342 scopus 로고    scopus 로고
    • note
    • 4 or silicon oxide, which exhibit very high elastic modules (> 150 Gpa). For critical applications diamond cantilevers are available.
  • 47
    • 0343362790 scopus 로고    scopus 로고
    • note
    • Along this line the slope is - 1 and Δd = 0. Since the tip-sample distance does not change one sets d = 0 along the contact line.
  • 49
    • 0342927586 scopus 로고    scopus 로고
    • note
    • The tip and sample are made of the same material.
  • 50
    • 85088333827 scopus 로고    scopus 로고
    • note
    • [3]
  • 52
    • 85088333279 scopus 로고    scopus 로고
    • note
    • 2 fit. Electrostatic forces would cause a slower decrease (∞ 1/d).
  • 54
    • 85088331625 scopus 로고    scopus 로고
    • note
    • -20 J.
  • 64
    • 0343362788 scopus 로고    scopus 로고
    • note
    • Not only the dissolved ions but also the water dipoles screen the electrical field.
  • 66
    • 0343798634 scopus 로고    scopus 로고
    • note
    • Double-layer repulsion belongs to the electrostatic forces.
  • 67
    • 0342493414 scopus 로고    scopus 로고
    • note
    • At low distances repulsive forces arising from the finite size of the solvent molecule occur. They are called structural or solvation forces.
  • 80
    • 85088334133 scopus 로고    scopus 로고
    • note
    • ST impossible.
  • 85
    • 0018101150 scopus 로고
    • G. I. Bell, Science 1978, 200, 618.
    • (1978) Science , vol.200 , pp. 618
    • Bell, G.I.1
  • 99
    • 85088333051 scopus 로고    scopus 로고
    • note
    • [96] measured the value as F = 280 pN. This example illustrates that the binding strength is a matter of external conditions such as the pulling speed of the cantilever.
  • 106
    • 0343362786 scopus 로고    scopus 로고
    • note
    • In this section, attractive forces have positive values following the standard set in the literature.
  • 124
    • 85088333101 scopus 로고    scopus 로고
    • note
    • → points into a given volume element.
  • 126
    • 0343362785 scopus 로고    scopus 로고
    • note
    • It is also conceivable that upon retraction of the cantilever the polymer becomes compressed, like tying a knot if the polymer is appropriately entangled.
  • 127
    • 0342493413 scopus 로고    scopus 로고
    • note
    • This is similar to the description of the paramagnetism or orientation of a dipole in an electrical field.
  • 128
    • 0343362780 scopus 로고    scopus 로고
    • note
    • Usually the extension x(F) is plotted versus the force F and Equation (12) fitted to the experimental data.
  • 129
    • 0000051162 scopus 로고    scopus 로고
    • Equation (12) depicts an exact solution, while Equation (13) is an approximation for large values of n, which occurs in a common experiment. It is noteworthy that usually the distance x is varied and the force F measured. This procedure corresponds to Equation (13). The latest instruments permit the application of a particular force by magnetic cantilevers (A. Schemmel, H. E. Gaub, Rev. Sci. Instrum. 1999, 70, 1313).
    • (1999) Rev. Sci. Instrum. , vol.70 , pp. 1313
    • Schemmel, A.1    Gaub, H.E.2
  • 130
    • 85088332736 scopus 로고    scopus 로고
    • note
    • B T or x ≪ L, then Equation (13) (FJC model) can be simplified to Equation (11), the GC model.
  • 139
    • 85088333923 scopus 로고    scopus 로고
    • note
    • 4Y.
  • 144
    • 85088332548 scopus 로고    scopus 로고
    • note
    • P.
  • 145
    • 0343362782 scopus 로고    scopus 로고
    • note
    • The specific stiffness Φ has the unit of a force and can be derived from the spring constant of the entire chain: K = Φ/L. This approach is analogous to K = κ/n in the case of the FJC model. Like the segment elasticity κ, Φ is also independent of the contour length. The relationship between κ and Φ is: Φ = κ/(n/L). The number of segments per length n/L is identical for all polymers of the same kind.
  • 147
    • 0342493412 scopus 로고    scopus 로고
    • note
    • The evaluation of Equation (16) in the form of the polynomial (left side) - (right side) = 0 is cumbersome, since only one of three possible solutions for F is useful.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.