메뉴 건너뛰기




Volumn 161, Issue 1, 2000, Pages 110-153

The phase-plane picture for a class of fourth-order conservative differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034628141     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1999.3698     Document Type: Article
Times cited : (53)

References (33)
  • 1
    • 0001208318 scopus 로고    scopus 로고
    • Travelling wave solutions of a fourth-order semilinear diffusion equation
    • Akveld M. E., Hulshof J. Travelling wave solutions of a fourth-order semilinear diffusion equation. Appl. Math. Lett. 11:1998;115-120.
    • (1998) Appl. Math. Lett. , vol.11 , pp. 115-120
    • Akveld, M.E.1    Hulshof, J.2
  • 2
    • 0002512816 scopus 로고
    • Homoclinic orbits in the dynamic phase space analogy of an elastic strut
    • Amick C. J., Toland J. F. Homoclinic orbits in the dynamic phase space analogy of an elastic strut. European J. Appl. Math. 3:1992;97-114.
    • (1992) European J. Appl. Math. , vol.3 , pp. 97-114
    • Amick, C.J.1    Toland, J.F.2
  • 3
    • 53349120754 scopus 로고    scopus 로고
    • Bifurcation and coalescence of multi-modal homoclinic orbits for a Hamiltonian system
    • Buffoni B., Champneys A. R., Toland J. F. Bifurcation and coalescence of multi-modal homoclinic orbits for a Hamiltonian system. J. Dynam. Differential Equations. 8:1996;221-281.
    • (1996) J. Dynam. Differential Equations , vol.8 , pp. 221-281
    • Buffoni, B.1    Champneys, A.R.2    Toland, J.F.3
  • 4
    • 0040843700 scopus 로고    scopus 로고
    • Uniqueness of solutions for the Extended Fisher-Kolmogorov equation
    • van den Berg J. B. Uniqueness of solutions for the Extended Fisher-Kolmogorov equation. C.R. Acad. Sci. Paris Sér. I Math. 326:1998;447-452.
    • (1998) C.R. Acad. Sci. Paris Sér. I Math. , vol.326 , pp. 447-452
    • Van Den Berg, J.B.1
  • 6
    • 0002538743 scopus 로고
    • Invariant manifolds for semilinear partial differential equations
    • U. Kirchgraber, & H.O. Walther. New York: Wiley
    • Bates P. W., Jones C. K. R. T. Invariant manifolds for semilinear partial differential equations. Kirchgraber U., Walther H. O. Dynamics Reported. 1989;Wiley, New York.
    • (1989) Dynamics Reported
    • Bates, P.W.1    Jones, C.K.R.T.2
  • 7
    • 0043081376 scopus 로고    scopus 로고
    • A global condition for quasi-random behaviour in a class of autonomous systems
    • Buffoni B., Séré É. A global condition for quasi-random behaviour in a class of autonomous systems. Comm. Pure Appl. Math. 49:1996;285-305.
    • (1996) Comm. Pure Appl. Math. , vol.49 , pp. 285-305
    • Buffoni, B.1    Séré, É.2
  • 8
    • 0002400014 scopus 로고
    • Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems
    • Buffoni B. Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems. J. Differential Equations. 121:1995;109-120.
    • (1995) J. Differential Equations , vol.121 , pp. 109-120
    • Buffoni, B.1
  • 10
    • 0000654735 scopus 로고    scopus 로고
    • Homoclinic oribits in reversible systems and their applications in mechanics, fluids and optics
    • Champneys A. R. Homoclinic oribits in reversible systems and their applications in mechanics, fluids and optics. Physica D. 112:1998;158-186.
    • (1998) Physica D , vol.112 , pp. 158-186
    • Champneys, A.R.1
  • 11
    • 0001803221 scopus 로고
    • Hunting for homoclinic orbits in reversible systems: A shooting technique
    • Champneys A. R., Spence A. Hunting for homoclinic orbits in reversible systems: A shooting technique. Adv. Comput. Math. 1:1993;81-108.
    • (1993) Adv. Comput. Math. , vol.1 , pp. 81-108
    • Champneys, A.R.1    Spence, A.2
  • 12
    • 36149031023 scopus 로고
    • Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems
    • Champneys A. R., Toland J. F. Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems. Nonlinearity. 6:1993;665-722.
    • (1993) Nonlinearity , vol.6 , pp. 665-722
    • Champneys, A.R.1    Toland, J.F.2
  • 13
    • 0000107832 scopus 로고
    • Homoclinic orbits in Hamiltonian system
    • Devaney R. L. Homoclinic orbits in Hamiltonian system. J. Differential Equations. 21:1976;431-438.
    • (1976) J. Differential Equations , vol.21 , pp. 431-438
    • Devaney, R.L.1
  • 14
    • 0001749209 scopus 로고
    • Blue sky catastrophes in reversible and Hamiltonian systems
    • Devaney R. L. Blue sky catastrophes in reversible and Hamiltonian systems. Indiana Univ. Math. J. 26:1977;247-263.
    • (1977) Indiana Univ. Math. J. , vol.26 , pp. 247-263
    • Devaney, R.L.1
  • 15
    • 0000689240 scopus 로고
    • Bistable systems with propagating fronts leading to pattern formation
    • Dee G. T., van Saarloos W. Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60:1988;2641-2644.
    • (1988) Phys. Rev. Lett. , vol.60 , pp. 2641-2644
    • Dee, G.T.1    Van Saarloos, W.2
  • 16
    • 0000417983 scopus 로고
    • Traveling waves of a perturbed diffusion equation arising in a phase field model
    • Gardner R. A., Jones C. K. R. T. Traveling waves of a perturbed diffusion equation arising in a phase field model. Indiana Univ. Math. J. 38:1989;1197-1222.
    • (1989) Indiana Univ. Math. J. , vol.38 , pp. 1197-1222
    • Gardner, R.A.1    Jones, C.K.R.T.2
  • 18
    • 0003304963 scopus 로고
    • Geometric Theory of Semilinear Parabolic Equations
    • Springer-Verlag
    • Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840:1981;Springer-Verlag.
    • (1981) Lecture Notes in Math. , vol.840
    • Henry, D.1
  • 20
    • 0032478448 scopus 로고    scopus 로고
    • Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria
    • Kalies W. D., Kwapisz J., van der Vorst R. C. A. M. Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria. Comm. Math. Phys. 193:1998;337-371.
    • (1998) Comm. Math. Phys. , vol.193 , pp. 337-371
    • Kalies, W.D.1    Kwapisz, J.2    Van Der Vorst, R.C.A.M.3
  • 21
    • 0030295224 scopus 로고    scopus 로고
    • Multitransition homoclinic and heteroclinic solutions to the Extended Fisher-Kolmogorov equation
    • Kalies W. D., van der Vorst R. C. A. M. Multitransition homoclinic and heteroclinic solutions to the Extended Fisher-Kolmogorov equation. J. Differential Equations. 131:1996;209-228.
    • (1996) J. Differential Equations , vol.131 , pp. 209-228
    • Kalies, W.D.1    Van Der Vorst, R.C.A.M.2
  • 22
    • 0002619683 scopus 로고    scopus 로고
    • Uniqueness of the stationary wave for the Extended Fisher-Kolmogorov equation
    • Kwapisz J. Uniqueness of the stationary wave for the Extended Fisher-Kolmogorov equation. J. Differential Equations. 1997.
    • (1997) J. Differential Equations
    • Kwapisz, J.1
  • 24
    • 0033229028 scopus 로고    scopus 로고
    • Non-existence and uniqueness results for fourth-order Hamiltonian systems
    • Peletier M. A. Non-existence and uniqueness results for fourth-order Hamiltonian systems. Nonlinearity. 12:1999;1555-1570.
    • (1999) Nonlinearity , vol.12 , pp. 1555-1570
    • Peletier, M.A.1
  • 25
    • 0001378357 scopus 로고    scopus 로고
    • Pulse-like spatial patterns described by higher-order model equations
    • Peletier L. A., Rotariu-Bruma A. I., Troy W. C. Pulse-like spatial patterns described by higher-order model equations. J. Differential Equations. 150:1998;124-187.
    • (1998) J. Differential Equations , vol.150 , pp. 124-187
    • Peletier, L.A.1    Rotariu-Bruma, A.I.2    Troy, W.C.3
  • 26
    • 0001075628 scopus 로고
    • Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Kinks
    • Peletier L. A., Troy W. C. Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Kinks. Differential Integral Equations. 8:1995;1279-1304.
    • (1995) Differential Integral Equations , vol.8 , pp. 1279-1304
    • Peletier, L.A.1    Troy, W.C.2
  • 27
    • 0000589054 scopus 로고
    • A topological shooting method and the existence of kinks of the Extended Fisher-Kolmogorov equation
    • Peletier L. A., Troy W. C. A topological shooting method and the existence of kinks of the Extended Fisher-Kolmogorov equation. Topol. Methods Nonlinear Anal. 6:1995;331-355.
    • (1995) Topol. Methods Nonlinear Anal. , vol.6 , pp. 331-355
    • Peletier, L.A.1    Troy, W.C.2
  • 28
    • 0030578639 scopus 로고    scopus 로고
    • Chaotic spatial patterns described by the Extended Fisher-Kolmogorov equation
    • Peletier L. A., Troy W. C. Chaotic spatial patterns described by the Extended Fisher-Kolmogorov equation. J. Differential Equations. 129:1996;458-508.
    • (1996) J. Differential Equations , vol.129 , pp. 458-508
    • Peletier, L.A.1    Troy, W.C.2
  • 29
    • 0001173202 scopus 로고    scopus 로고
    • Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Periodic solutions
    • Peletier L. A., Troy W. C. Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Periodic solutions. SIAM J. Math. Anal. 28:1997;1317-1353.
    • (1997) SIAM J. Math. Anal. , vol.28 , pp. 1317-1353
    • Peletier, L.A.1    Troy, W.C.2
  • 32
    • 0000034625 scopus 로고
    • Homoclinic period blow-up in reversible and conservative systems
    • Vanderbauwhede A., Fiedler B. Homoclinic period blow-up in reversible and conservative systems. Z. Angew. Math. Phys. 43:1992;292-318.
    • (1992) Z. Angew. Math. Phys. , vol.43 , pp. 292-318
    • Vanderbauwhede, A.1    Fiedler, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.