-
1
-
-
0000501656
-
Information Theory and an Extension of the Maximum Likelihood Principle
-
B. N. Petrov and F. Csaki, Budapest: Akademia Kiedo
-
Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” in Proceedings of the Second International Symposium on Information Theory, eds. B. N. Petrov and F. Csaki, Budapest: Akademia Kiedo, pp. 267-281.
-
(1973)
Proceedings of the Second International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0002259289
-
ICOMP; A New Model-Selection Criterion
-
H. H. Bock, Amsterdam: International Federation of Classification Societies, Elsevier Science Publishers (North-Holland)
-
Bozdogan, H. (1988), “ICOMP; A New Model-Selection Criterion,” in Classification and Related Methods of Data Analysis, ed. H. H. Bock, Amsterdam: International Federation of Classification Societies, Elsevier Science Publishers (North-Holland), pp. 599-608.
-
(1988)
Classification and Related Methods of Data Analysis
, pp. 599-608
-
-
Bozdogan, H.1
-
3
-
-
0000747992
-
On the Information-Based Measure of Covariance Complexity and its Application to the Evaluation of Multivariate Linear Models
-
Bozdogan, H. (1990), “On the Information-Based Measure of Covariance Complexity and its Application to the Evaluation of Multivariate Linear Models,” Communications in Statistics, Theory, and Methods, 19, 221-278.
-
(1990)
Communications in Statistics, Theory, and Methods
, vol.19
, pp. 221-278
-
-
Bozdogan, H.1
-
4
-
-
0002356276
-
(1993), “Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse Fisher Information Matrix,”
-
Gesellschaft für Klassifikation, Springer-Verlag
-
Bozdogan, H. (1993), “Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse Fisher Information Matrix,” in Information and Classification: Concepts, Methods and Applications, eds. O. Opitz, B. Lausen, and R. Klar, number 16 in Studies in Classification, Data Analysis, and Knowledge Organization, Proceedings of the Annual Conference of the Gesellschaft fur Klassifikation, Berlin: Gesellschaft für Klassifikation, Springer-Verlag, pp. 40-54.
-
Information and Classification: Concepts, Methods and Applications, Eds. O. Opitz, B. Lausen, and R. Klar, Number 16 in Studies in Classification, Data Analysis, and Knowledge Organization, Proceedings of the Annual Conference of the Gesellschaft Fur Klassifikation, Berlin
, pp. 40-54
-
-
Bozdogan, H.1
-
5
-
-
0038917718
-
The Minimum Description Length Principle for Gaussian Regression
-
Denver, Colorado
-
Bryant, P. G. (1996), “The Minimum Description Length Principle for Gaussian Regression,” Technical Report UCD-CBA Working Paper 1996-08, University of Colorado at Denver, College of Business, Campus Box 165, Denver, Colorado 80217-3364.
-
(1996)
Technical Report UCD-CBA Working Paper 1996-08, University of Colorado at Denver, College of Business, Campus Box
, vol.165
, pp. 80217-83364
-
-
Bryant, P.G.1
-
6
-
-
0005555978
-
-
Burr Ridge, IL: Richard D. Irwin, Inc
-
Bryant, P. G., and Smith, M. A. (1999), Practical Data Analysis: Case Studies in Business Statistics (vols. I, II, and III), Burr Ridge, IL: Richard D. Irwin, Inc.
-
(1999)
Practical Data Analysis: Case Studies in Business Statistics (Vols. I, II, And
, pp. III
-
-
Bryant, P.G.1
Smith, M.A.2
-
9
-
-
0010239028
-
Model Selection and the Principle of Minimum Description Length
-
Murray Hill, NJ
-
Hansen, M. H., and Yu, B. (1997), “Model Selection and the Principle of Minimum Description Length,” Technical Report, Bell Laboratories, Murray Hill, NJ.
-
(1997)
Technical Report, Bell Laboratories
-
-
Hansen, M.H.1
Yu, B.2
-
12
-
-
0004254507
-
-
4th ed.), Burr Ridge, IL: Richard D. Irwin, Inc
-
Neter, J., Kutner, M. H., Nachtsheim, C., and Wasserman, W. (1996), Applied Linear Regression Models (4th ed.), Burr Ridge, IL: Richard D. Irwin, Inc.
-
(1996)
Applied Linear Regression Models
-
-
Neter, J.1
Kutner, M.H.2
Nachtsheim, C.3
Wasserman, W.4
-
13
-
-
38149147261
-
Principal Components Selection by the Criterion of the Minimum Mean Difference of Complexity
-
Qian, G., Gabor, G., and Gupta, R. P. (1994), “Principal Components Selection by the Criterion of the Minimum Mean Difference of Complexity,” Journal of Multivariate Analysis, 49, 55-75.
-
(1994)
Journal of Multivariate Analysis
, vol.49
, pp. 55-75
-
-
Qian, G.1
Gabor, G.2
Gupta, R.P.3
-
14
-
-
0039079127
-
Generalised Linear Model Selection by the Predictive Least Quasi-Deviance Criterion
-
Qian, G., Gabor, G., and Gupta, R. P. (1996a), “Generalised Linear Model Selection by the Predictive Least Quasi-Deviance Criterion,” Biometrika, 83, 41-54.
-
(1996)
Biometrika
, vol.83
, pp. 41-54
-
-
Qian, G.1
Gabor, G.2
Gupta, R.P.3
-
15
-
-
0030586533
-
Test for Homogeneity of Several Populations by Stochastic Complexity
-
Qian, G., Gupta, R. P., and Gabor, G. (1996b), “Test for Homogeneity of Several Populations by Stochastic Complexity,” Journal of Statistical Planning and Inference, 53, 133-151.
-
(1996)
Journal of Statistical Planning and Inference
, vol.53
, pp. 133-151
-
-
Qian, G.1
Gupta, R.P.2
Gabor, G.3
-
16
-
-
0000318553
-
Stochastic Complexity and Modeling
-
Rissanen, J. (1986), “Stochastic Complexity and Modeling,” The Annals of Statistics, 14, 1080-1100.
-
(1986)
The Annals of Statistics
, vol.14
, pp. 1080-1100
-
-
Rissanen, J.1
-
18
-
-
0029086309
-
Minimum Description Length Principle
-
S. Kotz and N. Johnsos, New York: Wiley
-
Rissanen, J. (1988), “Minimum Description Length Principle,” in Encyclopedia of Statistical Sciences (vol. 5), eds. S. Kotz and N. Johnsos, New York: Wiley, pp. 523-527.
-
(1988)
Encyclopedia of Statistical Sciences (Vol. 5)
, pp. 523-527
-
-
Rissanen, J.1
-
20
-
-
0000120766
-
Estimating the Dimension of a Model
-
Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals of Statistics, 6, 461-464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
21
-
-
0000107517
-
An Information Measure for Classification
-
Wallace, C. S., and Boulton, D. M. (1968), “An Information Measure for Classification,” The Computer Journal, 11, 185-194.
-
(1968)
The Computer Journal
, vol.11
, pp. 185-194
-
-
Wallace, C.S.1
Boulton, D.M.2
-
22
-
-
0000208682
-
Estimation and Inference by Compact Coding
-
Series B
-
Wallace, C. S., and Freeman, P. R. (1987), “Estimation and Inference by Compact Coding,” Journal of the Royal Statistical Society, Series B, 49, 240-252.
-
(1987)
Journal of the Royal Statistical Society
, vol.49
, pp. 240-252
-
-
Wallace, C.S.1
Freeman, P.R.2
|