메뉴 건너뛰기




Volumn 9, Issue 6, 2000, Pages 519-527

Expected Number of Distinct Part Sizes in a Random Integer Composition

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034551055     PISSN: 09635483     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0963548300004399     Document Type: Article
Times cited : (10)

References (11)
  • 4
    • 0000808933 scopus 로고
    • The asymptotic probability of a tie for first place
    • Eisenberg, B., Stengle, G. and Strang, G. (1993) The asymptotic probability of a tie for first place. Ann. Appl. Probab. 13 731-745.
    • (1993) Ann. Appl. Probab. , vol.13 , pp. 731-745
    • Eisenberg, B.1    Stengle, G.2    Strang, G.3
  • 5
    • 84972487829 scopus 로고
    • The distribution of the number of summands in the partitions of positive integer
    • Erdos, P. and Lehner, J. (1941) The distribution of the number of summands in the partitions of positive integer. Duke Math. J. 8 335-345.
    • (1941) Duke Math. J. , vol.8 , pp. 335-345
    • Erdos, P.1    Lehner, J.2
  • 6
    • 0029325565 scopus 로고
    • Mellin transform and asymptotics: Finite differences and Rice's integrals
    • special volume on mathematical analysis of algorithms
    • Flajolet, P. and Sedgewick, R. (1995) Mellin transform and asymptotics: finite differences and Rice's integrals. Theoret. Comput. Sci. 144 (special volume on mathematical analysis of algorithms) 101-124.
    • (1995) Theoret. Comput. Sci. , vol.144 , pp. 101-124
    • Flajolet, P.1    Sedgewick, R.2
  • 7
    • 0001568776 scopus 로고
    • The number of different part sizes in a random integer partition
    • Goh, W. M. Y. and Schmutz, E. (1995) The number of different part sizes in a random integer partition. J. Combin. Theory Ser. A 69 149-158.
    • (1995) J. Combin. Theory Ser. A , vol.69 , pp. 149-158
    • Goh, W.M.Y.1    Schmutz, E.2
  • 10
    • 0030496416 scopus 로고    scopus 로고
    • The number of winners in a discrete geometrically distributed sample
    • Kirschenhofer, P. and Prodinger, H. (1996) The number of winners in a discrete geometrically distributed sample. Ann. Appl. Probab. 6 687-694.
    • (1996) Ann. Appl. Probab. , vol.6 , pp. 687-694
    • Kirschenhofer, P.1    Prodinger, H.2
  • 11
    • 0001730838 scopus 로고
    • Three problems in combinatorial asymptotics
    • Wilf, H. S. (1983) Three problems in combinatorial asymptotics. J. Combin. Theory Ser. A 35 199-207.
    • (1983) J. Combin. Theory Ser. A , vol.35 , pp. 199-207
    • Wilf, H.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.