-
2
-
-
58149411463
-
Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity
-
G. ANDREWS & J. BALL, Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity, J. Diff. Eqs. 44, 306-341, 1982.
-
(1982)
J. Diff. Eqs.
, vol.44
, pp. 306-341
-
-
Andrews, G.1
Ball, J.2
-
3
-
-
0040100404
-
Nonlinear problems in elasticity
-
Springer Verlag, New York
-
S. ANTMAN, Nonlinear problems in elasticity, Applied Mathematical Sciences, Vol. 107, Springer Verlag, New York 1995.
-
(1995)
Applied Mathematical Sciences
, vol.107
-
-
Antman, S.1
-
4
-
-
0029692967
-
Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity
-
S. ANTMAN & T. SEIDMAN, Quasilinear Hyperbolic-Parabolic Equations of One-Dimensional Viscoelasticity, J. Diff. Eqs. 124, 132-184, 1996.
-
(1996)
J. Diff. Eqs.
, vol.124
, pp. 132-184
-
-
Antman, S.1
Seidman, T.2
-
5
-
-
0032265134
-
Physically unacceptable viscous stresses
-
S. ANTMAN, Physically unacceptable viscous stresses, Z. Angew. Math. Phys. 49, 980-988, 1998.
-
(1998)
Z. Angew. Math. Phys.
, vol.49
, pp. 980-988
-
-
Antman, S.1
-
7
-
-
0017417265
-
Convexity conditions and existence theorems in nonlinear elasticity
-
J. BALL, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337-403. 1977.
-
(1977)
Arch. Rational Mech. Anal.
, vol.63
, pp. 337-403
-
-
Ball, J.1
-
9
-
-
0003699286
-
Mathematical elasticity, vol. 1: three-dimensional elasticity
-
North-Holland, Amsterdam
-
P. CIARLET, Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity, Studies in Mathematics and Its Appliations, Vol. 20, North-Holland, Amsterdam 1994.
-
(1994)
Studies in Mathematics and Its Appliations
, vol.20
-
-
Ciarlet, P.1
-
10
-
-
0002624928
-
On the thermostatics of continuous media
-
B. COLEMAN & W. NOLL, On the Thermostatics of Continuous Media, Arch. Rational Mech. Anal. 4, 97-128, 1959.
-
(1959)
Arch. Rational Mech. Anal.
, vol.4
, pp. 97-128
-
-
Coleman, B.1
Noll, W.2
-
11
-
-
0002097881
-
The mixed initial-boundary value problem for the equations of one-dimensional nonlinear viscoelasticity
-
C. DAFERMOS, The mixed initial-boundary value problem for the equations of one-dimensional nonlinear viscoelasticity, J. Diff. Eqs. 6, 71-86, 1969.
-
(1969)
J. Diff. Eqs.
, vol.6
, pp. 71-86
-
-
Dafermos, C.1
-
13
-
-
0030526460
-
Young measure solution for a nonlinear parabolic equation of forward-backward type
-
S. DEMOULINI, Young measure solution for a nonlinear parabolic equation of forward-backward type, SIAM J. Math. Anal. 27, 376-403, 1996.
-
(1996)
SIAM J. Math. Anal.
, vol.27
, pp. 376-403
-
-
Demoulini, S.1
-
14
-
-
0037813462
-
Young measure solutions for nonlinear evolutionary systems of mixed type
-
S. DEMOULINI, Young measure solutions for nonlinear evolutionary systems of mixed type, Ann. Inst. Henri Poincaré, Analyse non linéaire, 14, 143-162, 1997.
-
(1997)
Ann. Inst. Henri Poincaré, Analyse Non Linéaire
, vol.14
, pp. 143-162
-
-
Demoulini, S.1
-
15
-
-
0039508630
-
Construction of entropy solutions for one-dimensional elastodynamics via time discretisation
-
S. DEMOULINI, D. STUART & A. TZAVARAS, Construction of entropy solutions for one-dimensional elastodynamics via time discretisation, Ann. Inst. Henri Poincaré. Analyse non linéaire 17, 711-731, 2000
-
(2000)
Ann. Inst. Henri Poincaré. Analyse Non Linéaire
, vol.17
, pp. 711-731
-
-
Demoulini, S.1
Stuart, D.2
Tzavaras, A.3
-
16
-
-
0035633712
-
A variational approximation scheme for three dimensional elastodynamics with polyconvex energy
-
S. DEMOULINI, D. STUART & A. TZAVARAS, A variational approximation scheme for three dimensional elastodynamics with polyconvex energy. Arch RAtional Mechn. Anal., to appear
-
Arch Rational Mechn. Anal.
-
-
Demoulini, S.1
Stuart, D.2
Tzavaras, A.3
-
17
-
-
0003285448
-
Weak convergence methods for nonlinear partial differential equations
-
American Mathematical Society, Providence
-
L. EVANS, Weak convergence methods for nonlinear partial differential equations, CBMS Vol 74, American Mathematical Society, Providence 1990.
-
(1990)
CBMS
, vol.74
-
-
Evans, L.1
-
18
-
-
0031488286
-
Implicit time discretization and global existence for a quasilinear evolution equation with nonconvex energy
-
G. FRIESECKE & G. DOLZMANN, Implicit time discretization and global existence for a quasilinear evolution equation with nonconvex energy, SIAM J. Math. Anal. 28, 363-380, 1997.
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 363-380
-
-
Friesecke, G.1
Dolzmann, G.2
-
19
-
-
0013001298
-
Quasimonotonicty, regularity and duality for nonlinear sytems of partial differential equations
-
C. HAMBURGER, Quasimonotonicty, regularity and duality for nonlinear sytems of partial differential equations. Annali Mat. pura ed appl. 69, 321-354, 1995.
-
(1995)
Annali Mat. Pura Ed Appl.
, vol.69
, pp. 321-354
-
-
Hamburger, C.1
-
20
-
-
0003073394
-
Weak convergence of integrands and the young measure representation
-
D. KINDERLEHRER & P. PEDREGAL, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23, 1-19, 1992.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 1-19
-
-
Kinderlehrer, D.1
Pedregal, P.2
-
21
-
-
0002444348
-
Gradient young measures generated by sequences in sobolev spaces
-
D. KINDERLEHRER & P. PEDREGAL, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4, 59-90 1994.
-
(1994)
J. Geom. Anal.
, vol.4
, pp. 59-90
-
-
Kinderlehrer, D.1
Pedregal, P.2
-
22
-
-
21344450476
-
Quasimonotone versus pseudomonotone
-
R. LANDES, Quasimonotone versus pseudomonotone. Proc. Roy. Soc. Edin. A 126, 705-717, 1996.
-
(1996)
Proc. Roy. Soc. Edin. A
, vol.126
, pp. 705-717
-
-
Landes, R.1
-
25
-
-
0023170272
-
Phase transitions in one-dimensional nonlinear viscoelasticity
-
R. PEGO, Phase transitions in one-dimensional nonlinear viscoelasticity, Arch. Rational Mech. Anal. 97, 353-394, 1987.
-
(1987)
Arch. Rational Mech. Anal.
, vol.97
, pp. 353-394
-
-
Pego, R.1
-
26
-
-
0020007737
-
On the mathematical foundations of elastic stability theory.I.
-
M. POTIER-FERRY, On the Mathematical Foundations of Elastic Stability Theory.I. Arch. Rational Mech. Anal. 78, 55-72, 1982.
-
(1982)
Arch. Rational Mech. Anal.
, vol.78
, pp. 55-72
-
-
Potier-Ferry, M.1
-
27
-
-
84974082050
-
Dynamical modeling of phase transitions by means of viscoelasticity in many dimensions
-
P. RYBKA, Dynamical modeling of phase transitions by means of viscoelasticity in many dimensions, Proc. Roy. Soc. Edin. A 121, 101-138, 1992.
-
(1992)
Proc. Roy. Soc. Edin. A
, vol.121
, pp. 101-138
-
-
Rybka, P.1
-
28
-
-
0000440966
-
Compensated compactness and partial differential equations
-
Pitman Research Notes in Mathematics
-
L. TARTAR, Compensated compactness and partial differential equations. In Nonlinear Analysis and Mechanics, KNOPS, ed., Vol. IV, Pitman Research Notes in Mathematics, 1979, pp. 136-212.
-
(1979)
Nonlinear Analysis and Mechanics, KNOPS, Ed.
, vol.4
, pp. 136-212
-
-
Tartar, L.1
-
30
-
-
0002354342
-
-
Springer Lecture Notes in Mathematics
-
K.-W. ZHANG, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, Chern, ed., Vol. 1306, Springer Lecture Notes in Mathematics 1988, pp. 262-277.
-
(1988)
On the Dirichlet Problem for a Class of Quasilinear Elliptic Systems of Partial Differential Equations in Divergence Form, Chern, Ed.
, vol.1306
, pp. 262-277
-
-
Zhang, K.-W.1
|