-
13
-
-
0001397949
-
-
I. A. Bonn and M. S. Skaf, Chem. Phys. Lett. 296, 125 (1998); M. S. Skaf, J. Phys. Chem. A, 103, 10719 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 10719
-
-
Skaf, M.S.1
-
14
-
-
0030082751
-
-
A. C. Kumbharkhane, S. N. Helambe, M. P. Lakhande, S. Doraiswamy, and S. C. Mehrotra, Pramana, J. Phys. 46, 91 (1996).
-
(1996)
Pramana, J. Phys.
, vol.46
, pp. 91
-
-
Kumbharkhane, A.C.1
Helambe, S.N.2
Lakhande, M.P.3
Doraiswamy, S.4
Mehrotra, S.C.5
-
17
-
-
0000824407
-
-
S. Mashino, S. Kuwabara, S. Yagihara, and K. Higasi, J. Chem. Phys. 90, 3292 (1989).
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 3292
-
-
Mashino, S.1
Kuwabara, S.2
Yagihara, S.3
Higasi, K.4
-
20
-
-
0000395238
-
-
N. Micali, S. Trusso, C. Vasi, D. Blaudez, and F. Mallamace, Phys. Rev. E 54, 1720 (1996).
-
(1996)
Phys. Rev. E
, vol.54
, pp. 1720
-
-
Micali, N.1
Trusso, S.2
Vasi, C.3
Blaudez, D.4
Mallamace, F.5
-
21
-
-
11744367106
-
-
M. Ferrario, M. Haughney, I. R. McDonald, and M. L. Klein, J. Chem. Phys. 93, 5156 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 5156
-
-
Ferrario, M.1
Haughney, M.2
McDonald, I.R.3
Klein, M.L.4
-
27
-
-
84856122441
-
-
G. Pálinkás, I. Bakó, K. Heinzinger, and P. Bopp, Mol. Phys. 73, 897 (1991).
-
(1991)
Mol. Phys.
, vol.73
, pp. 897
-
-
Pálinkás, G.1
Bakó, I.2
Heinzinger, K.3
Bopp, P.4
-
33
-
-
0342586871
-
-
note
-
6
-
-
-
-
34
-
-
0343892500
-
-
note
-
See EPAPS Document No. E-JCPSA6-113-521048 for far-infared and infared data. This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information. In addition to the data presented in this article, spectra of the nonaqueous mixtures in Ref. 6 have also been archived.
-
-
-
-
35
-
-
0343892504
-
-
note
-
The MolDy program was coded by K. Refson, and is freely available from the internet at www.earth.ox.ac.uk/%7Ekeith/moldy.html.
-
-
-
-
36
-
-
0343456774
-
-
note
-
The difference between the temperatures of the simulation and the experimental spectra is relatively small and is ignored in this article, where the trends in the dynamics as a function of composition are our primary consideration. The simulation temperature of 25 °C is the temperature at which the potentials for the neat liquids were parametrized (see Refs. 35-38).
-
-
-
-
40
-
-
0004016501
-
-
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. J. Chem. Phys. 79, 926 (1983).
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 926
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
44
-
-
0343892498
-
-
note
-
Two points stand out: (1) the equilibration period is significantly longer than those of numerous earlier studies (Refs. 4, 20, 22, and 26), and (2) the equilibration period depends on which system is being investigated and on the composition of the mixture. The individual molecules require adequate time to explore various configurations within the system, and their (usually) randomly distributed starting positions may be far from equilibrium. The slow relaxation of the RDFs of aqueous mixtures has been noted by Laaksonen et al. (Ref. 21).
-
-
-
-
47
-
-
0343021142
-
-
note
-
A Kramers-Kronig calculation requires the high frequency index of refraction. The indices of refraction for the neat liquids at 20 °C are 1.359 (acetone), 1.344 (acetonitrile), 1.328 (methanol), and 1.333 (water) (Ref. 46). Ideal values of the indices of refraction were used for the mixtures.
-
-
-
-
50
-
-
0343456759
-
-
note
-
Other models included the Cole-Cole and Cole-Davidson models, the Onsager-Cole, Rocard-Powles and Lobo-Robinson-Rodriguez models, and the Fröhlich, Mori, and Chandra-Wei-Patey models. The Bertolini treatment of the data was also evaluated. See Ref. 49.
-
-
-
-
51
-
-
0018066428
-
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1978)
Infrared Phys.
, vol.18
, pp. 855
-
-
Kestemont, E.1
Hermans, F.2
Finsy, R.3
Van Loon, R.4
-
52
-
-
25344436872
-
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1978)
Chem. Phys. Lett.
, vol.55
, pp. 305
-
-
Hermans, F.1
Kestemont, E.2
-
53
-
-
0009934582
-
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1973)
J. Chem. Phys.
, vol.59
, pp. 5992
-
-
Lobo, R.1
Robinson, J.E.2
Rodriguez, S.3
-
54
-
-
0018066428
-
-
Clarendon, Oxford
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1986)
Theory of Dielectrics
-
-
Frölich, H.1
-
55
-
-
0026940053
-
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1992)
IEEE J. Quantum Electron.
, vol.28
, pp. 2518
-
-
Pederson, J.E.1
Keiding, S.R.2
-
56
-
-
0039501413
-
-
E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 2068
-
-
Chandra, A.1
Wei, D.2
Patey, G.N.3
-
57
-
-
0001217296
-
-
D. Bertolini, M. Cassettari, C. Ferrari, and E. Tombari, ibid. 108, 6416 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 6416
-
-
Bertolini, D.1
Cassettari, M.2
Ferrari, C.3
Tombari, E.4
-
60
-
-
0342586854
-
-
note
-
Two difficulties arose with analyzing the experimental spectra: (1) Because the Gaussian curve is symmetric, fitting it to the slightly asymmetric absorption band of water would result in values of the peak position that are too low. (2) The lower frequency side of the absorption band was inaccessible for some compositions. To handle these difficulties systematically, the curves were fit to as much of the spectra as appeared symmetric. The agreement between the absorption band and the fitted curves over the selected range was good. The fitted values of the peak widths are expected to be slightly low, but should follow changes in the actual peak width.
-
-
-
-
61
-
-
0342586858
-
-
note
-
For acetone and acetonitrile mixtures, which have no high frequency librations, the ideal peak position and width are the same as those of neat water. The peak positions of methanol and water are almost identical, but the widths differ. Therefore, the ideal peak positions are very similar to those of the neat liquids, whereas the widths change significantly with mixing.
-
-
-
-
66
-
-
0343021134
-
-
note
-
For instance, for water molecules that donate up to two and can accept up to three hydrogen bonds, there are 60 unique hydrogen bonding states.
-
-
-
|