메뉴 건너뛰기




Volumn 113, Issue 24, 2000, Pages 11222-11236

Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION; ACETONITRILE; HYDROGEN BONDS; METHANOL; MIXTURES; MOLECULAR DYNAMICS;

EID: 0034499037     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1328072     Document Type: Article
Times cited : (211)

References (69)
  • 12
  • 13
    • 0001397949 scopus 로고    scopus 로고
    • I. A. Bonn and M. S. Skaf, Chem. Phys. Lett. 296, 125 (1998); M. S. Skaf, J. Phys. Chem. A, 103, 10719 (1999).
    • (1999) J. Phys. Chem. A , vol.103 , pp. 10719
    • Skaf, M.S.1
  • 33
    • 0342586871 scopus 로고    scopus 로고
    • note
    • 6
  • 34
    • 0343892500 scopus 로고    scopus 로고
    • note
    • See EPAPS Document No. E-JCPSA6-113-521048 for far-infared and infared data. This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information. In addition to the data presented in this article, spectra of the nonaqueous mixtures in Ref. 6 have also been archived.
  • 35
    • 0343892504 scopus 로고    scopus 로고
    • note
    • The MolDy program was coded by K. Refson, and is freely available from the internet at www.earth.ox.ac.uk/%7Ekeith/moldy.html.
  • 36
    • 0343456774 scopus 로고    scopus 로고
    • note
    • The difference between the temperatures of the simulation and the experimental spectra is relatively small and is ignored in this article, where the trends in the dynamics as a function of composition are our primary consideration. The simulation temperature of 25 °C is the temperature at which the potentials for the neat liquids were parametrized (see Refs. 35-38).
  • 44
    • 0343892498 scopus 로고    scopus 로고
    • note
    • Two points stand out: (1) the equilibration period is significantly longer than those of numerous earlier studies (Refs. 4, 20, 22, and 26), and (2) the equilibration period depends on which system is being investigated and on the composition of the mixture. The individual molecules require adequate time to explore various configurations within the system, and their (usually) randomly distributed starting positions may be far from equilibrium. The slow relaxation of the RDFs of aqueous mixtures has been noted by Laaksonen et al. (Ref. 21).
  • 47
    • 0343021142 scopus 로고    scopus 로고
    • note
    • A Kramers-Kronig calculation requires the high frequency index of refraction. The indices of refraction for the neat liquids at 20 °C are 1.359 (acetone), 1.344 (acetonitrile), 1.328 (methanol), and 1.333 (water) (Ref. 46). Ideal values of the indices of refraction were used for the mixtures.
  • 50
    • 0343456759 scopus 로고    scopus 로고
    • note
    • Other models included the Cole-Cole and Cole-Davidson models, the Onsager-Cole, Rocard-Powles and Lobo-Robinson-Rodriguez models, and the Fröhlich, Mori, and Chandra-Wei-Patey models. The Bertolini treatment of the data was also evaluated. See Ref. 49.
  • 51
    • 0018066428 scopus 로고
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1978) Infrared Phys. , vol.18 , pp. 855
    • Kestemont, E.1    Hermans, F.2    Finsy, R.3    Van Loon, R.4
  • 52
    • 25344436872 scopus 로고
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1978) Chem. Phys. Lett. , vol.55 , pp. 305
    • Hermans, F.1    Kestemont, E.2
  • 53
    • 0009934582 scopus 로고
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1973) J. Chem. Phys. , vol.59 , pp. 5992
    • Lobo, R.1    Robinson, J.E.2    Rodriguez, S.3
  • 54
    • 0018066428 scopus 로고
    • Clarendon, Oxford
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1986) Theory of Dielectrics
    • Frölich, H.1
  • 55
    • 0026940053 scopus 로고
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1992) IEEE J. Quantum Electron. , vol.28 , pp. 2518
    • Pederson, J.E.1    Keiding, S.R.2
  • 56
    • 0039501413 scopus 로고
    • E. Kestemont, F. Hermans, R. Finsy, and R. van Loon, Infrared Phys. 18, 855 (1978); F. Hermans and E. Kestemont, Chem. Phys. Lett. 55, 305 (1978); R. Lobo, J. E. Robinson, and S. Rodriguez, J. Chem. Phys. 59, 5992 (1973); H. Frölich, Theory of Dielectrics (Clarendon, Oxford, 1986); J. E. Pederson and S. R. Keiding, IEEE J. Quantum Electron. 28, 2518 (1992); A. Chandra, D. Wei, and G. N. Patey, J. Chem. Phys. 99, 2068 (1993);
    • (1993) J. Chem. Phys. , vol.99 , pp. 2068
    • Chandra, A.1    Wei, D.2    Patey, G.N.3
  • 60
    • 0342586854 scopus 로고    scopus 로고
    • note
    • Two difficulties arose with analyzing the experimental spectra: (1) Because the Gaussian curve is symmetric, fitting it to the slightly asymmetric absorption band of water would result in values of the peak position that are too low. (2) The lower frequency side of the absorption band was inaccessible for some compositions. To handle these difficulties systematically, the curves were fit to as much of the spectra as appeared symmetric. The agreement between the absorption band and the fitted curves over the selected range was good. The fitted values of the peak widths are expected to be slightly low, but should follow changes in the actual peak width.
  • 61
    • 0342586858 scopus 로고    scopus 로고
    • note
    • For acetone and acetonitrile mixtures, which have no high frequency librations, the ideal peak position and width are the same as those of neat water. The peak positions of methanol and water are almost identical, but the widths differ. Therefore, the ideal peak positions are very similar to those of the neat liquids, whereas the widths change significantly with mixing.
  • 66
    • 0343021134 scopus 로고    scopus 로고
    • note
    • For instance, for water molecules that donate up to two and can accept up to three hydrogen bonds, there are 60 unique hydrogen bonding states.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.