-
1
-
-
0001717185
-
On the convergence of Halley's method
-
G. Alefeld, On the convergence of Halley's method, Amer. Math. Monthly 88 (1981) 530-536.
-
(1981)
Amer. Math. Monthly
, vol.88
, pp. 530-536
-
-
Alefeld, G.1
-
4
-
-
0040530004
-
Historical survey of solution by functional iteration
-
D.F. Bailey, Historical survey of solution by functional iteration, Math. Mag. 62 (1989) 155-166.
-
(1989)
Math. Mag.
, vol.62
, pp. 155-166
-
-
Bailey, D.F.1
-
5
-
-
0003973853
-
Padé Approximants, 2nd Edition
-
Cambridge University Press, Cambridge
-
G.A. Baker Jr., P.R. Graves-Morris, Padé Approximants, 2nd Edition, Encyclopedia of Mathematics and its Applications, Vol. 59, Cambridge University Press, Cambridge, 1996.
-
(1996)
Encyclopedia of Mathematics and Its Applications
, vol.59
-
-
Baker G.A., Jr.1
Graves-Morris, P.R.2
-
6
-
-
0002836895
-
Halley's method for solving equations
-
H. Bateman, Halley's method for solving equations, Amer. Math. Monthly 45 (1938) 11-17.
-
(1938)
Amer. Math. Monthly
, vol.45
, pp. 11-17
-
-
Bateman, H.1
-
7
-
-
0038217783
-
-
St. Martin's Press, New York
-
P. Beckmann, History of π, St. Martin's Press, New York, 1971.
-
(1971)
History of π
-
-
Beckmann, P.1
-
8
-
-
0003955774
-
-
Springer, New York
-
L. Berggren, J. Borwein, P. Borwein, Pi: A Source Book, Springer, New York, 1997.
-
(1997)
Pi: A Source Book
-
-
Berggren, L.1
Borwein, J.2
Borwein, P.3
-
9
-
-
0003362771
-
Polynomials and Matrix Computations
-
Birkhäuser, Boston, Cambridge, MA
-
D. Bini, V.Y. Pan, Polynomials and Matrix Computations, Fundamental Algorithms, Vol. 1, Birkhäuser, Boston, Cambridge, MA, 1994.
-
(1994)
Fundamental Algorithms
, vol.1
-
-
Bini, D.1
Pan, V.Y.2
-
10
-
-
0016939583
-
Fast multiple-precision evaluation of elementary functions
-
R.P. Brent, Fast multiple-precision evaluation of elementary functions, JACM 23 (1976) 242-251.
-
(1976)
JACM
, vol.23
, pp. 242-251
-
-
Brent, R.P.1
-
12
-
-
0030246195
-
Conjugate gradient methods for Toeplitz systems
-
R.H. Chan, M.K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996) 427-482.
-
(1996)
SIAM Rev.
, vol.38
, pp. 427-482
-
-
Chan, R.H.1
Ng, M.K.2
-
13
-
-
0004276254
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
G. Dahlquist, Å. Björck, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
-
(1974)
Numerical Methods
-
-
Dahlquist, G.1
Björck, Å.2
-
14
-
-
0030406042
-
Accelerated convergence in Newton's method
-
W.F. Ford, J.A. Pennline, Accelerated convergence in Newton's method, SIAM Rev. 38 (1996) 658-659.
-
(1996)
SIAM Rev.
, vol.38
, pp. 658-659
-
-
Ford, W.F.1
Pennline, J.A.2
-
15
-
-
0028445851
-
Accelerated convergence in Newt7on's method
-
J. Gerlach, Accelerated convergence in Newt7on's method, SIAM Rev. 36 (1994) 272-276.
-
(1994)
SIAM Rev.
, vol.36
, pp. 272-276
-
-
Gerlach, J.1
-
16
-
-
0004236492
-
-
The John Hopkins University Press, Baltimore, MD
-
G. Golub, C. Van Loan, Matrix Computations, 3rd Edition, The John Hopkins University Press, Baltimore, MD, 1996.
-
(1996)
Matrix Computations, 3rd Edition
-
-
Golub, G.1
Van Loan, C.2
-
17
-
-
0001050260
-
A new, exact, and easy method of finding roots of any equations generally, and that without any previous reduction (Latin, 1694)
-
E. Halley, A new, exact, and easy method of finding roots of any equations generally, and that without any previous reduction (Latin, 1694), Philos. Trans. Roy. Soc. London 18 (1694) 136-145.
-
(1694)
Philos. Trans. Roy. Soc. London
, vol.18
, pp. 136-145
-
-
Halley, E.1
-
21
-
-
0024611179
-
Rapidly converging iterative formulae for finding square roots and their computational efficiencies
-
M.J. Jamieson, Rapidly converging iterative formulae for finding square roots and their computational efficiencies, Comput. J. 32 (1989) 93-94.
-
(1989)
Comput. J.
, vol.32
, pp. 93-94
-
-
Jamieson, M.J.1
-
22
-
-
0003356071
-
Continued Fractions
-
Addison-Wesley, Reading, MA
-
W.B. Jones, W.J. Thron, Continued Fractions, Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley, Reading, MA, 1980.
-
(1980)
Encyclopedia of Mathematics and Its Applications
, vol.11
-
-
Jones, W.B.1
Thron, W.J.2
-
23
-
-
0039531837
-
-
Technical Report DCS-TR 328, Department of Computer Science, Rutgers University, New Brunswick, New Jersey
-
B. Kalantari, Generalization of Taylor's theorem and Newton's method via a new family of determinantal interpolation formulas, Technical Report DCS-TR 328, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, 1997.
-
(1997)
Generalization of Taylor's Theorem and Newton's Method via a New Family of Determinantal Interpolation Formulas
-
-
Kalantari, B.1
-
24
-
-
0004958020
-
-
Technical Report DCS-TR 369, Department of Computer Science, Rutgers University, New Brunswick, New Jersey
-
B. Kalantari, Approximation of polynomial root using a single input and the corresponding derivative values, Technical Report DCS-TR 369, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, 1998.
-
(1998)
Approximation of Polynomial Root Using a Single Input and the Corresponding Derivative Values
-
-
Kalantari, B.1
-
25
-
-
0342285470
-
-
Technical Report DCS-TR 370, Department of Computer Science, Rutgers University, New Brunswick, New Jersey
-
B. Kalantari, Halley's method is the first member of an infinite family of cubic order rootfinding methods, Technical Report DCS-TR 370, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, 1998.
-
(1998)
Halley's method is the first member of an infinite family of cubic order rootfinding methods
-
-
Kalantari, B.1
-
26
-
-
0004967376
-
On the order of convergence of a determinantal family of root-finding methods
-
B. Kalantari, On the order of convergence of a determinantal family of root-finding methods, BIT 39 (1999) 96-109.
-
(1999)
BIT
, vol.39
, pp. 96-109
-
-
Kalantari, B.1
-
27
-
-
0342720547
-
New formula for approximation of pi and other transcendental numbers
-
Technical Report DCS-TR 389, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, To be published
-
B. Kalantari, New formula for approximation of pi and other transcendental numbers, Technical Report DCS-TR 389, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, 1999. To be published in Numerical Algorithms.
-
(1999)
Numerical Algorithms
-
-
Kalantari, B.1
-
28
-
-
0342720548
-
-
Department of Computer Science, Rutgers University, New Brunswick, New Jersey, forthcoming
-
B. Kalantari, An infinite family of iteration functions of order m for every m, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, forthcoming.
-
An Infinite Family of Iteration Functions of Order m for Every m
-
-
Kalantari, B.1
-
29
-
-
0033880273
-
Newton's method and generation of a determinantal family of iteration functions
-
B. Kalantari, J. Gerlach, Newton's method and generation of a determinantal family of iteration functions, J. Comput. Appl. Math. 116 (2000) 195-200.
-
(2000)
J. Comput. Appl. Math.
, vol.116
, pp. 195-200
-
-
Kalantari, B.1
Gerlach, J.2
-
30
-
-
0001295137
-
High order iterative methods for approximating square roots
-
B. Kalantari, I. Kalantari, High order iterative methods for approximating square roots, BIT 36 (1996) 395-399.
-
(1996)
BIT
, vol.36
, pp. 395-399
-
-
Kalantari, B.1
Kalantari, I.2
-
31
-
-
0031554218
-
A basic family of iteration functions for polynomial root finding and its characterizations
-
B. Kalantari, I. Kalantari, R. Zaare-Nahandi, A basic family of iteration functions for polynomial root finding and its characterizations, J. Comput. Appl. Math. 80 (1997) 209-226.
-
(1997)
J. Comput. Appl. Math.
, vol.80
, pp. 209-226
-
-
Kalantari, B.1
Kalantari, I.2
Zaare-Nahandi, R.3
-
32
-
-
0035336353
-
A computational comparison of the first nine members of determinantal family of rootfinding methods
-
to be published
-
B. Kalantari, S. Park, A computational comparison of the first nine members of determinantal family of rootfinding methods, J. Comput. Appl. Math. 130 (2001), to be published.
-
(2001)
J. Comput. Appl. Math.
, vol.130
-
-
Kalantari, B.1
Park, S.2
-
33
-
-
0015770388
-
A new upper bound on the complexity of derivative evaluation
-
H.T. Kung, A new upper bound on the complexity of derivative evaluation, Inform. Process. Lett. 2 (1974) 146-147.
-
(1974)
Inform. Process. Lett.
, vol.2
, pp. 146-147
-
-
Kung, H.T.1
-
34
-
-
0027667665
-
A bibliography on root of polynomials
-
J.M. McNamee, A bibliography on root of polynomials, J. Comput. Appl. Math. 47 (1993) 391-394.
-
(1993)
J. Comput. Appl. Math.
, vol.47
, pp. 391-394
-
-
McNamee, J.M.1
-
35
-
-
0000916141
-
Generalized Fibonacci numbers and associated matrices
-
E.P. Miles, Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960) 745-757.
-
(1960)
Amer. Math. Monthly
, vol.67
, pp. 745-757
-
-
Miles, E.P.1
-
39
-
-
0031169815
-
Solving a polynomial equation: Some history and recent progress
-
V.Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (1997) 187-220.
-
(1997)
SIAM Rev.
, vol.39
, pp. 187-220
-
-
Pan, V.Y.1
-
40
-
-
84966204708
-
Computation of Pi using Arithmetic-geometric mean
-
E. Salamin, Computation of Pi using Arithmetic-geometric mean, Math. Comput. 30 (1976) 565-570.
-
(1976)
Math. Comput.
, vol.30
, pp. 565-570
-
-
Salamin, E.1
-
41
-
-
14944351893
-
On the geometry of Halley's method
-
T.R. Scavo, J.B. Thoo, On the geometry of Halley's method, Amer. Math. Monthly 102 (1995) 417-426.
-
(1995)
Amer. Math. Monthly
, vol.102
, pp. 417-426
-
-
Scavo, T.R.1
Thoo, J.B.2
-
42
-
-
0000960921
-
On the geometry of polynomials and a theory of cost: Part I
-
M. Shub, S. Smale, On the geometry of polynomials and a theory of cost: Part I, Ann. Sci. Ecole Norm. Sup. 18 (1985) 107-142.
-
(1985)
Ann. Sci. Ecole Norm. Sup.
, vol.18
, pp. 107-142
-
-
Shub, M.1
Smale, S.2
-
43
-
-
0002383975
-
Newton's method estimates from data at one point
-
R.E. Ewing, K.I. Gross, C.F. Martin (Eds.)
-
S. Smale, Newton's method estimates from data at one point, in: R.E. Ewing, K.I. Gross, C.F. Martin (Eds.), The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, 1986, pp. 185-196.
-
(1986)
The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics
, pp. 185-196
-
-
Smale, S.1
-
45
-
-
84968484946
-
A class of globally convergent iteration functions for the solution of polynomial equations
-
J.F. Traub, A class of globally convergent iteration functions for the solution of polynomial equations, Math. Comput. 20 (1966) 113-138.
-
(1966)
Math. Comput.
, vol.20
, pp. 113-138
-
-
Traub, J.F.1
-
46
-
-
38249013481
-
On two sequences of algorithms for approximating square roots
-
A.K. Yeyios, On two sequences of algorithms for approximating square roots, J. Comput. Appl. Math. 40 (1992) 63-72.
-
(1992)
J. Comput. Appl. Math.
, vol.40
, pp. 63-72
-
-
Yeyios, A.K.1
-
47
-
-
0029535607
-
Historical development of Newton-Raphson method
-
T.J. Ypma, Historical development of Newton-Raphson method, SIAM Rev. 37 (1995) 531-551.
-
(1995)
SIAM Rev.
, vol.37
, pp. 531-551
-
-
Ypma, T.J.1
|