-
1
-
-
0000030935
-
Monotone difference schemes for singular perturbation problems
-
L. ABRAHAMSSON AND S. OSHER, Monotone difference schemes for singular perturbation problems, SIAM J. Numer. Anal., 19 (1982), pp. 979-992.
-
(1982)
SIAM J. Numer. Anal.
, vol.19
, pp. 979-992
-
-
Abrahamsson, L.1
Osher, S.2
-
2
-
-
0000186754
-
The uniform convergence with respect to a small parameter of A. A. Samarskii's monotone scheme and its modification
-
V. B. ANDREEV AND I. A. SAVIN, The uniform convergence with respect to a small parameter of A. A. Samarskii's monotone scheme and its modification, Comput. Math. Math. Phys., 35 (1995), pp. 581-591.
-
(1995)
Comput. Math. Math. Phys.
, vol.35
, pp. 581-591
-
-
Andreev, V.B.1
Savin, I.A.2
-
3
-
-
0006611351
-
Collocation for singular perturbation, problems III: Nonlinear problems without turning points
-
U. ASCHER AND R. WEISS, Collocation for singular perturbation, problems III: Nonlinear problems without turning points, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 811-829.
-
(1984)
SIAM J. Sci. Stat. Comput.
, vol.5
, pp. 811-829
-
-
Ascher, U.1
Weiss, R.2
-
4
-
-
0001238824
-
Towards optimization of methods for solving boundary value problems in the presence of a boundary layer
-
in Russian
-
N. S. BAKHVALOV, Towards optimization of methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), pp. 841-859 (in Russian).
-
(1969)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.9
, pp. 841-859
-
-
Bakhvalov, N.S.1
-
5
-
-
0042968779
-
The numerical solution of a nonlinear boundary value problem with a small parameter effecting the highest derivative
-
in Russian
-
I. P. BOGLAEV, The numerical solution of a nonlinear boundary value problem with a small parameter effecting the highest derivative, Zh. Vychisl. Mat. Mat. Fiz., 24 (1984), pp. 1649-1656 (in Russian).
-
(1984)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.24
, pp. 1649-1656
-
-
Boglaev, I.P.1
-
6
-
-
0006583119
-
Numerical solution of quasilinear singularly perturbed ordinary differential equation without turning points
-
P. LIN AND Y. SU, Numerical solution of quasilinear singularly perturbed ordinary differential equation without turning points, Appl. Math. Mech., 10 (1989), pp. 1005-1010.
-
(1989)
Appl. Math. Mech.
, vol.10
, pp. 1005-1010
-
-
Lin, P.1
Su, Y.2
-
7
-
-
0025742052
-
A numerical method for quasilinear singular perturbation problems with turning points
-
P. LIN, A numerical method for quasilinear singular perturbation problems with turning points, Computing, 46 (1991), pp. 155-164.
-
(1991)
Computing
, vol.46
, pp. 155-164
-
-
Lin, P.1
-
8
-
-
85031532183
-
Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem
-
to appear
-
T. LINSS, Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem, IMA J. Numer. Anal., to appear.
-
IMA J. Numer. Anal.
-
-
Linss, T.1
-
9
-
-
0344614030
-
An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem
-
T. LINSS, An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem, J. Comput. Appl. Math., 110 (1999), pp. 93-104.
-
(1999)
J. Comput. Appl. Math.
, vol.110
, pp. 93-104
-
-
Linss, T.1
-
10
-
-
0001200849
-
Stability and monotonicity properties of stiff quasilinear boundary problems
-
J. LORENZ, Stability and monotonicity properties of stiff quasilinear boundary problems, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 12 (1982), pp. 151-175.
-
(1982)
Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.
, vol.12
, pp. 151-175
-
-
Lorenz, J.1
-
11
-
-
0003432195
-
-
World Scientific, Singapore
-
J. J. H. MILLER, E. O'RIORDAN, AND G. I. SHISHKIN, Solution of Singularly Perturbed Problems with ε-uniform Numerical Methods - Introduction to the Theory of Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996.
-
(1996)
Solution of Singularly Perturbed Problems with Ε-uniform Numerical Methods - Introduction to the Theory of Linear Problems in One and Two Dimensions
-
-
Miller, J.J.H.1
O'Riordan, E.2
Shishkin, G.I.3
-
14
-
-
0030490165
-
A note on the conditioning of upwind schemes on Shishkin meshes
-
H.-G. ROOS, A note on the conditioning of upwind schemes on Shishkin meshes, IMA J. Numer. Anal., 16 (1996), pp. 529-538.
-
(1996)
IMA J. Numer. Anal.
, vol.16
, pp. 529-538
-
-
Roos, H.-G.1
-
15
-
-
22044433064
-
Layer-adapted grids for singular perturbation problems
-
H.-G. ROOS, Layer-adapted grids for singular perturbation problems, ZAMM Z. Angew. Math. Mech., 78 (1998), pp. 291-309.
-
(1998)
ZAMM Z. Angew. Math. Mech.
, vol.78
, pp. 291-309
-
-
Roos, H.-G.1
-
16
-
-
0344718020
-
Sufficient conditions for uniform convergence on layer adapted grids
-
H.-G. ROOS AND T. LINSS, Sufficient conditions for uniform convergence on layer adapted grids, Computing, 64 (1999), pp. 27-45.
-
(1999)
Computing
, vol.64
, pp. 27-45
-
-
Roos, H.-G.1
Linss, T.2
-
17
-
-
0003229567
-
Numerical Methods for Singularly Perturbed Differential Equations
-
Springer-Verlag, Berlin
-
H.-G. ROOS, M. STYNSES, AND L. TOBISKA, Numerical Methods for Singularly Perturbed Differential Equations, Springer Ser. Comput. Math. 24, Springer-Verlag, Berlin, 1996.
-
(1996)
Springer Ser. Comput. Math.
, vol.24
-
-
Roos, H.-G.1
Stynses, M.2
Tobiska, L.3
-
18
-
-
0001588439
-
A difference scheme for a singularly perturbed parabolic equation with a discontinuous boundary condition
-
in Russian
-
G. I. SHISHKIN, A difference scheme for a singularly perturbed parabolic equation with a discontinuous boundary condition, Zh. Vychisl. Mat. Mat. Fiz., 28 (1988), pp. 1679-1092 (in Russian).
-
(1988)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.28
, pp. 1679-11092
-
-
Shishkin, G.I.1
-
19
-
-
0040645585
-
Difference approximation of a singularly perturbed boundary value problem for a quasilinear elliptic equation degenerating to a first-order equation
-
in Russian
-
G. I. SHISHKIN, Difference approximation of a singularly perturbed boundary value problem for a quasilinear elliptic equation degenerating to a first-order equation, Zh. Vychisl. Mat. Mat. Fiz., 32 (1992), pp. 550-566 (in Russian).
-
(1992)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.32
, pp. 550-566
-
-
Shishkin, G.I.1
-
20
-
-
22444455088
-
A finite difference analysis of a streamline diffusion method on a Shishkin mesh
-
M. STYNES AND L. TOBISKA, A finite difference analysis of a streamline diffusion method on a Shishkin mesh, Numer. Algorithms, 18 (1998), pp. 337-360.
-
(1998)
Numer. Algorithms
, vol.18
, pp. 337-360
-
-
Stynes, M.1
Tobiska, L.2
-
22
-
-
0002560723
-
A uniform numerical method for quasilinear singular perturbation problems without turning points
-
R. VULANOVIĆ, A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing, 41 (1989), pp. 97-106.
-
(1989)
Computing
, vol.41
, pp. 97-106
-
-
Vulanović, R.1
-
23
-
-
0001747334
-
A uniform numerical method for a class of quasilinear turning point problems
-
R. Vichnevetsky and J. J. H. Miller, eds., International Association for Mathematics and Computers in Simulation, Dublin
-
R. VULANOVIĆ, A uniform numerical method for a class of quasilinear turning point problems, in Proceedings of the 13th IMACS World Congress for Computation and Applied Mathematics, R. Vichnevetsky and J. J. H. Miller, eds., International Association for Mathematics and Computers in Simulation, Dublin, 1991, p. 493.
-
(1991)
Proceedings of the 13th IMACS World Congress for Computation and Applied Mathematics
, pp. 493
-
-
Vulanović, R.1
-
24
-
-
0007012101
-
A second order numerical method for nonlinear singular perturbation problems without turning points
-
R. VULANOVIĆ, A second order numerical method for nonlinear singular perturbation problems without turning points, Zh. Vychisl. Mat. Mat. Fiz., 31 (1991), pp. 522-532.
-
(1991)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.31
, pp. 522-532
-
-
Vulanović, R.1
-
25
-
-
85031521948
-
A priori meshes for singularly perturbed quasilinear two-point boundary value problems
-
to appear
-
R. VULANOVIĆ, A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. Numer. Anal., to appear.
-
IMA J. Numer. Anal.
-
-
Vulanović, R.1
|