메뉴 건너뛰기




Volumn 15, Issue 4, 2001, Pages 417-439

High order schemes for resolving waves: Number of points per wavelength

Author keywords

High order schemes; Numerical error; Resolution

Indexed keywords

COMPUTER SIMULATION; DIFFERENTIATION (CALCULUS); ERROR ANALYSIS; FOURIER TRANSFORMS; INTERPOLATION; POLYNOMIALS; RUNGE KUTTA METHODS; WAVE EQUATIONS;

EID: 0034435883     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1011180613990     Document Type: Article
Times cited : (18)

References (16)
  • 3
    • 0001338069 scopus 로고    scopus 로고
    • On the Gibbs phenomenon III: Recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 280-290
    • Gottlieb, D.1    Shu, C.-W.2
  • 13
    • 0000034725 scopus 로고    scopus 로고
    • Essentially non-oscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws
    • In Cockburn, B., Johnson, C., Shu, C.-W., and Tadmor, E. (ed.: Quarteroni, A.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Springer
    • (1998) Lecture Notes in Mathematics , vol.1697 , pp. 325-432
    • Shu, C.-W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.