메뉴 건너뛰기




Volumn 23, Issue 3, 2000, Pages 419-435

Growth rates in the quaquaversal tiling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034423599     PISSN: 01795376     EISSN: None     Source Type: Journal    
DOI: 10.1007/PL00009510     Document Type: Article
Times cited : (5)

References (8)
  • 1
    • 0032398435 scopus 로고    scopus 로고
    • Quaquaversal tilings and rotations
    • J. Conway and C. Radin. Quaquaversal tilings and rotations. Invent. Math. 132 (1998), 179-188.
    • (1998) Invent. Math. , vol.132 , pp. 179-188
    • Conway, J.1    Radin, C.2
  • 2
    • 84990604340 scopus 로고
    • Hecke operators and distributing points on the sphere, I
    • A. Lubotsky, R. Phillips, and P. Sarnak. Hecke operators and distributing points on the sphere, I. Comm. Pure Appl. Math. 39 (1986) S149-S186.
    • (1986) Comm. Pure Appl. Math. , vol.39
    • Lubotsky, A.1    Phillips, R.2    Sarnak, P.3
  • 5
    • 85037762753 scopus 로고    scopus 로고
    • Private communication
    • C. Radin. Private communication.
    • Radin, C.1
  • 6
    • 0039835453 scopus 로고    scopus 로고
    • Subgroups of S O (3) associated with tilings
    • C. Radin and L. Sadun. Subgroups of S O (3) associated with tilings. J. Algebra 202 (1998), 611-633.
    • (1998) J. Algebra , vol.202 , pp. 611-633
    • Radin, C.1    Sadun, L.2
  • 7
    • 22844455640 scopus 로고    scopus 로고
    • On 2-generator subgroups of S O (3)
    • C. Radin and L. Sadun. On 2-generator subgroups of S O (3). Trans. Amer. Math. Soc., 351 (1999), 4469-4480.
    • (1999) Trans. Amer. Math. Soc. , vol.351 , pp. 4469-4480
    • Radin, C.1    Sadun, L.2
  • 8
    • 22044436777 scopus 로고    scopus 로고
    • Convergence of random walks on the circle generated by an irrational rotation
    • F. Su, Convergence of random walks on the circle generated by an irrational rotation. Trans. Amer. Math. Soc. 350 (1998), 3717-3741.
    • (1998) Trans. Amer. Math. Soc. , vol.350 , pp. 3717-3741
    • Su, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.