-
1
-
-
0003333950
-
Padé Approximants
-
Cambridge Univ. Press, Cambridge
-
G.A. Baker Jr. and P.R. Graves-Morris, Padé Approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 59 (Cambridge Univ. Press, Cambridge, 1996).
-
(1996)
2nd Ed., Encyclopedia of Mathematics and Its Applications
, vol.59
-
-
Baker G.A., Jr.1
Graves-Morris, P.R.2
-
2
-
-
84966222419
-
The computation of Pi to 29,360,000 decimal digits using Borwein's quadratically convergent algorithm
-
D.H. Bailey, The computation of Pi to 29,360,000 decimal digits using Borwein's quadratically convergent algorithm, Math. Comp. (1988) 283-296.
-
(1988)
Math. Comp.
, pp. 283-296
-
-
Bailey, D.H.1
-
3
-
-
0039646466
-
The quest for π
-
D.H. Bailey, J.M. Borwein, P.B. Borwein and S. Plouffe, The quest for π, Math. Intelligencer 19 (1997) 50-57.
-
(1997)
Math. Intelligencer
, vol.19
, pp. 50-57
-
-
Bailey, D.H.1
Borwein, J.M.2
Borwein, P.B.3
Plouffe, S.4
-
4
-
-
0038217783
-
-
St. Martin's Press, New York
-
P. Beckmann, History of π (St. Martin's Press, New York, 1971).
-
(1971)
History of Π
-
-
Beckmann, P.1
-
6
-
-
0003751005
-
-
Birkhäuser, Boston/Cambridge, MA
-
D. Bini and V.Y. Pan, Polynomials and Matrix Computations, Vol. 1: Fundamental Algorithms (Birkhäuser, Boston/Cambridge, MA, 1994).
-
(1994)
Polynomials and Matrix Computations, Vol. 1: Fundamental Algorithms
, vol.1
-
-
Bini, D.1
Pan, V.Y.2
-
7
-
-
0000608155
-
Ramanujan, modular equations, and approximation to π, or how to compute one billion digits of π
-
J.M. Borwein, P.B. Borwein and H. Bailey, Ramanujan, modular equations, and approximation to π, or how to compute one billion digits of π, Amer. Math. Monthly (1989) 201-219.
-
(1989)
Amer. Math. Monthly
, pp. 201-219
-
-
Borwein, J.M.1
Borwein, P.B.2
Bailey, H.3
-
8
-
-
0016939583
-
Fast multiple-precision evaluation of elementary functions
-
R.P. Brent, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach. 23 (1976) 242-251.
-
(1976)
J. Assoc. Comput. Mach.
, vol.23
, pp. 242-251
-
-
Brent, R.P.1
-
9
-
-
0042105379
-
-
Urbana-Champaign, IL, Academic Press, Boston, MA
-
D.V. Chudnovsky and G.V. Chudnovsky, Approximations and Complex Multiplication According to Ramanujan. Ramanujan revisited (Urbana-Champaign, IL, 1987) (Academic Press, Boston, MA, 1988) 375-472.
-
(1987)
Approximations and Complex Multiplication According to Ramanujan. Ramanujan Revisited
, pp. 375-472
-
-
Chudnovsky, D.V.1
Chudnovsky, G.V.2
-
10
-
-
0022011265
-
An efficient formula for linear recurrences
-
C.M. Fiduccia, An efficient formula for linear recurrences, SIAM J. Comput. 14 (1985) 106-112.
-
(1985)
SIAM J. Comput.
, vol.14
, pp. 106-112
-
-
Fiduccia, C.M.1
-
11
-
-
0001050260
-
A new, exact, and easy method of finding roots of any equations generally, and that without any previous reduction
-
E. Halley, A new, exact, and easy method of finding roots of any equations generally, and that without any previous reduction, Philos. Trans. Roy. Soc. London 18 (1694) 136-145.
-
(1694)
Philos. Trans. Roy. Soc. London
, vol.18
, pp. 136-145
-
-
Halley, E.1
-
12
-
-
0001295137
-
High order iterative methods for approximating square roots
-
B. Kalantari and I. Kalantari, High order iterative methods for approximating square roots, BIT 36 (1996) 395-399.
-
(1996)
BIT
, vol.36
, pp. 395-399
-
-
Kalantari, B.1
Kalantari, I.2
-
13
-
-
0031554218
-
A basic family of iteration functions for polynomial root finding and its characterizations
-
B. Kalantari, I. Kalantari and R. Zaare-Nahandi, A basic family of iteration functions for polynomial root finding and its characterizations, J. Comput. Appl. Math. 80 (1997) 209-226.
-
(1997)
J. Comput. Appl. Math.
, vol.80
, pp. 209-226
-
-
Kalantari, B.1
Kalantari, I.2
Zaare-Nahandi, R.3
-
14
-
-
0004967376
-
On the order of a determinantal family of root-finding methods
-
B. Kalantari, On the order of a determinantal family of root-finding methods, BIT 39 (1999) 96-109.
-
(1999)
BIT
, vol.39
, pp. 96-109
-
-
Kalantari, B.1
-
15
-
-
0039531837
-
Generalization of Taylor's theorem and Newton's method via a new family of determinantal interpolation formulas
-
Technical Report DCS-TR 328, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantari, Generalization of Taylor's theorem and Newton's method via a new family of determinantal interpolation formulas, Technical Report DCS-TR 328, Department of Computer Science, Rutgers University, New Brunswick, NJ (1997), to appear in J. Comput. Appl. Math.
-
(1997)
J. Comput. Appl. Math.
-
-
Kalantari, B.1
-
16
-
-
0043107202
-
-
Technical Report DCS-TR 330, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantar, A lower bound on determinants from linear programming, Technical Report DCS-TR 330, Department of Computer Science, Rutgers University, New Brunswick, NJ (1997).
-
(1997)
A Lower Bound on Determinants from Linear Programming
-
-
Kalantar, B.1
-
17
-
-
0004958020
-
-
Technical Report DCS-TR 369, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantari, Approximation of polynomial root using a single input and the corresponding derivative values, Technical Report DCS-TR 369, Department of Computer Science, Rutgers University, New Brunswick, NJ (1998).
-
(1998)
Approximation of Polynomial Root Using a Single Input and the Corresponding Derivative Values
-
-
Kalantari, B.1
-
18
-
-
0342285470
-
-
Technical Report DCS-TR 370, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantari, Halley's method as the first member of an infinite family of cubic order rootfinding methods, Technical Report DCS-TR 370, Department of Computer Science, Rutgers University, New Brunswick, NJ (1998).
-
(1998)
Halley's Method as the First Member of an Infinite Family of Cubic Order Rootfinding Methods
-
-
Kalantari, B.1
-
19
-
-
0043107201
-
Newton's method and generation of a determinantal family of iteration functions
-
Technical Report DCS-TR 371, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantari and J. Gerlach, Newton's method and generation of a determinantal family of iteration functions, Technical Report DCS-TR 371, Department of Computer Science, Rutgers University, New Brunswick, NJ (1998), to appear in J. Comput. Appl. Math.
-
(1998)
J. Comput. Appl. Math.
-
-
Kalantari, B.1
Gerlach, J.2
-
20
-
-
0042105377
-
A computational comparison of the first nine members of a determinantal family of rootfinding methods
-
Technical Report DCS-TR 375, Department of Computer Science, Rutgers University, New Brunswick, NJ
-
B. Kalantari and S. Park, A computational comparison of the first nine members of a determinantal family of rootfinding methods, Technical Report DCS-TR 375, Department of Computer Science, Rutgers University, New Brunswick, NJ (1998), to appear in J. Comput. Appl. Math.
-
(1998)
J. Comput. Appl. Math.
-
-
Kalantari, B.1
Park, S.2
-
22
-
-
84966204708
-
Computation of Pi using Arithmetic-geometric mean
-
E. Salamin, Computation of Pi using Arithmetic-geometric mean, Math. Comp. 30 (1976) 565-570.
-
(1976)
Math. Comp.
, vol.30
, pp. 565-570
-
-
Salamin, E.1
-
23
-
-
14944351893
-
On the geometry of Halley's method
-
T.R. Scavo and J.B. Thoo, On the geometry of Halley's method, Amer. Math. Monthly 102 (1995) 417-426.
-
(1995)
Amer. Math. Monthly
, vol.102
, pp. 417-426
-
-
Scavo, T.R.1
Thoo, J.B.2
-
24
-
-
0042105378
-
Calculation of π to 51.5 billion decimal digits on distributed memory parallel processors
-
D. Takahashi and Y. Kanada, Calculation of π to 51.5 billion decimal digits on distributed memory parallel processors (in Japanese) Trans. Inform. Process. Soc. Japan 39 (1998) 2074-2083.
-
(1998)
Trans. Inform. Process. Soc. Japan
, vol.39
, pp. 2074-2083
-
-
Takahashi, D.1
Kanada, Y.2
|