-
1
-
-
0000424410
-
Prepivoting to reduce level error of confidence sets
-
Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74, 457-468.
-
(1987)
Biometrika
, vol.74
, pp. 457-468
-
-
Beran, R.1
-
2
-
-
0000931301
-
On the validity of the formal Edgeworth expansion
-
Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6, 434-485.
-
(1978)
Ann. Statist.
, vol.6
, pp. 434-485
-
-
Bhattacharya, R.N.1
Ghosh, J.K.2
-
3
-
-
0000255030
-
Monte Carlo approximation and the iterated bootstrap
-
Booth, J. G. and Hall, P. (1994). Monte Carlo approximation and the iterated bootstrap. Biometrika 81, 331-340.
-
(1994)
Biometrika
, vol.81
, pp. 331-340
-
-
Booth, J.G.1
Hall, P.2
-
4
-
-
0032221032
-
Allocation of Monte Carlo resources for the iterated bootstrap
-
Booth, J. and Presnell, B. (1998). Allocation of Monte Carlo resources for the iterated bootstrap. J. Comput. Graph. Statist. 7, 92-112.
-
(1998)
J. Comput. Graph. Statist.
, vol.7
, pp. 92-112
-
-
Booth, J.1
Presnell, B.2
-
5
-
-
0000713911
-
Bootstrap confidence intervals
-
DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals (with Discussion). Statist. Sci. 11, 189-228.
-
(1996)
Statist. Sci.
, vol.11
, pp. 189-228
-
-
DiCiccio, T.J.1
Efron, B.2
-
6
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
-
(1979)
Ann. Statist.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
7
-
-
84988052077
-
Nonparametric standard errors and confidence intervals
-
Efron, B. (1981). Nonparametric standard errors and confidence intervals (with Discussion). Canad. J. Statist. 9, 139-172.
-
(1981)
Canad. J. Statist.
, vol.9
, pp. 139-172
-
-
Efron, B.1
-
8
-
-
84923818429
-
Better bootstrap confidence intervals
-
Efron, B. (1987). Better bootstrap confidence intervals. (with Discussion). J. Amer. Statist. Assoc. 82, 171-200.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 171-200
-
-
Efron, B.1
-
9
-
-
0001368481
-
On the number of bootstrap simulations required to construct a confidence interval
-
Hall, P. (1986). On the number of bootstrap simulations required to construct a confidence interval. Ann. Statist. 14, 1453-1462.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1453-1462
-
-
Hall, P.1
-
11
-
-
0004752614
-
Improvement of jackknife confidence limit methods
-
Hinkley, D. V. and Wei, B. C. (1984). Improvement of jackknife confidence limit methods. Biometrika 71, 331-339.
-
(1984)
Biometrika
, vol.71
, pp. 331-339
-
-
Hinkley, D.V.1
Wei, B.C.2
-
12
-
-
21844487255
-
Asymptotic iterated bootstrap confidence intervals
-
Lee, S. M. S. and Young, G. A. (1995). Asymptotic iterated bootstrap confidence intervals. Ann. Statist. 23, 1301-1330.
-
(1995)
Ann. Statist.
, vol.23
, pp. 1301-1330
-
-
Lee, S.M.S.1
Young, G.A.2
-
13
-
-
0033481115
-
The effect of Monte Carlo approximation on coverage error of double-bootstrap confidence intervals
-
Lee, S. M. S. and Young, G. A. (1999). The effect of Monte Carlo approximation on coverage error of double-bootstrap confidence intervals. J. Roy. Statist. Soc. Ser. B 61, 353-366.
-
(1999)
J. Roy. Statist. Soc. Ser. B
, vol.61
, pp. 353-366
-
-
Lee, S.M.S.1
Young, G.A.2
-
15
-
-
0004829628
-
Kernel smoothing to improve bootstrap confidence intervals
-
Polansky, A. M. and Schucany, W. R. (1997). Kernel smoothing to improve bootstrap confidence intervals. J. Roy. Statist. Soc. Ser. B 59, 821-838.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 821-838
-
-
Polansky, A.M.1
Schucany, W.R.2
-
18
-
-
0004754976
-
Approximating the distribution of a general standardized functional statistic with that of jackknife pseudovalues
-
(Edited by R. LePage and L. Billard), Wiley, New York
-
Tu, D. (1992). Approximating the distribution of a general standardized functional statistic with that of jackknife pseudovalues. In Exploring the Limits of Bootstrap, (Edited by R. LePage and L. Billard), 279-306. Wiley, New York.
-
(1992)
Exploring the Limits of Bootstrap
, pp. 279-306
-
-
Tu, D.1
|